
Learning Distributional Uncertainty
Estimation for Semantic Segmentation

David Williams

Worcester College

A thesis submitted for the degree of Doctor of Philosophy.

Acknowledgements

I would firstly like to thank my supervisor, Paul Newman, for providing
the means and the environment that allowed me to pursue this DPhil. I
left each of our meetings with a greater sense of perspective and zeal for
our projects, and this was no doubt a considerable help for the times when
it wasn’t clear a polished research product was in sight. Your rootedness
in the practical aspects of robotics always gave me the confidence that we
were solving something worthwhile.

Secondly, a thanks to our MRG postdocs, Daniele and Matt. Our conver-
sations were extremely important in keeping the work on track and your
constant presence as a sounding board for ideas was invaluable. Along
with Matt and Daniele, a thanks also has to go out to the wider MRG and
ORI community. Aspects of doing a PhD are inherently solitary, but being
alongside people on the same journey is a great antidote to this.

Finally, I want to thank those who have helped me outside of the academic
community: my girlfriend Chloe, my friends and my family. Whilst Ox-
ford is a brilliant place to be, spending time outside of the city with you
all kept me going and lent a sense of perspective to the whole process.

A special mention goes to my parents and grandparents, whose unwaver-
ing support and emphasis on the value of education have been fundamen-
tal to my journey. For this, I am truly grateful.

David Williams
5th May 2024

Abstract

Given that robots take consequential actions in the real-world, it should be ensured that

their deployment, insofar as possible, is safe and trustworthy by design. Accordingly, this

thesis tackles a problem known as distributional shift, which occurs when a deep learning

system is exposed to data that is shifted from the data distribution it was trained on, and

can result in unpredictable and unintended deployment scenarios. For the task of semantic

segmentation, this thesis investigates how a system can detect when error occurs due to

distributional shift in order to prevent these dangerous scenarios.

After a discussion of both the nature of distributional uncertainty, i.e. that which causes

error due to distributional shift, and the existing literature, this thesis presents three meth-

ods that perform distributional uncertainty estimation alongside semantic segmentation for

driving data.

The first method poses the problem as a large-scale out-of-distribution detection prob-

lem, where a large-scale image dataset is used to train a segmentation neural network to

separate in-distribution and out-of-distribution training instances. The training method for

this involves a contrastive loss function and a data augmentation procedure that reduces the

difference in appearance between in-distribution and out-of-distribution instances.

The second method takes learnings from the first, in that it uses out-of-distribution train-

ing images that are inherently less distributionally-shifted from the in-distribution images,

rather than relying on data augmentation. This makes the task of separating them more

challenging, and therefore the learned uncertainty estimation more robust. For this reason,

this method is designed to use an unlabelled distributionally-shifted driving dataset and

proposes a training procedure to account for the lack of labels.

Finally, the third method combines ideas from the previous two approaches by using

both large-scale image data to learn a general feature representation and an unlabelled

distributionally-shifted driving dataset to tailor this representation to distributional uncer-

tainty estimation for driving images.

2

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Semantics in Robotics . 10

1.3 Mitigating Distributional Shift . 11

1.3.1 Reduction of Distributional Uncertainty 11

1.3.2 Estimation of Distributional Uncertainty 12

1.3.3 To reduce or detect? . 13

1.4 Thesis Structure . 13

2 Introduction to Semantic Segmentation 16

2.1 Semantic Segmentation Preliminaries . 17

2.1.1 The Task . 17

2.1.2 Deep Semantic Segmentation Networks 17

2.1.3 Neural Network Training . 18

2.1.4 State-of-the-Art Methods . 19

2.2 Overfitting . 21

2.3 Calibration of Deep Neural Networks . 22

2.3.1 Calculating Calibration . 23

2.3.2 Observations of Miscalibration . 24

2.3.3 Causes of Neural Network Miscalibration 25

2.4 Conclusion . 28

3 Uncertainty Estimation in Deep Learning 30

3.1 Sources of Uncertainty . 31

3

3.2 Origins of Distributional Uncertainty . 32

3.3 Epistemic Uncertainty Estimation . 37

3.3.1 Principles for Epistemic Uncertainty Estimation 37

3.3.2 Methods for Epistemic Uncertainty Estimation 39

3.3.3 Discussion . 41

3.4 Aleatoric Uncertainty Estimation . 41

3.4.1 Learned Loss Attenuation . 42

3.4.2 Direct Error Estimation . 45

3.4.3 Generative Modelling . 47

3.4.4 Test-Time Augmentation . 48

3.4.5 Discussion . 49

3.5 Out-of-Distribution Detection . 50

3.5.1 Pretrained Methods . 51

3.5.2 Regularisation-Based Methods . 52

3.5.3 Self-Supervised Learning for OoD Detection 53

3.5.4 Proxy Task Methods . 54

3.5.5 Deep Generative Models . 55

3.5.6 Use of Out-of-Distribution Data . 56

3.5.7 Discussion . 57

3.6 Conclusion . 58

4 Model Evaluation and Datasets 60

4.1 Model Evaluation & Metrics . 61

4.1.1 Misclassification Detection . 62

4.1.2 Metrics: Definitions . 62

4.1.3 Metrics: Discussion . 65

4.2 SAX Semantic Segmentation Dataset . 67

4.2.1 Dataset Motivation . 68

4.2.2 Semantic Definitions . 69

4.2.3 Inclusion of multiple target domains . 70

4.2.4 Curation of the unlabelled SAX training datasets 71

4

4.3 Other Driving Datasets . 72

4.3.1 Cityscapes . 72

4.3.2 Berkeley DeepDrive . 72

4.3.3 WildDash . 73

4.3.4 KITTI . 73

5 Learning OoD Detection from Large-Scale Datasets 80

5.1 Motivation . 81

5.1.1 Contrastive Learning . 82

5.1.2 Training Data . 84

5.2 Proposed System Design . 86

5.2.1 Overview . 86

5.2.2 Objective Function . 86

5.2.3 Masking Label Noise . 89

5.2.4 Data Augmentation . 89

5.3 Experimental Setup . 91

5.3.1 Datasets . 91

5.3.2 Network Architecture . 92

5.4 Experiments and Results . 93

5.4.1 Data Augmentation Experiments . 94

5.4.2 Data Augmentation Results . 94

5.4.3 Objective Function Experiments . 94

5.4.4 Objective Function Results . 95

5.4.5 Data Diversity Experiments . 95

5.4.6 Data Diversity Results . 96

5.5 Conclusion . 96

6 Learning Uncertainty Estimation from Uncurated Domain Data 101

6.1 Motivation . 103

6.1.1 Using Unlabelled Out-of-Distribution Driving Data 103

6.1.2 Introduction to �-SSL . 105

5

6.1.3 How to tailor self-supervised methods for uncertainty estimation? . . 106

6.2 Preliminaries . 107

6.2.1 Segmentation via Prototypes . 107

6.2.2 Uncertainty Estimation via a Feature-Space Threshold 108

6.3 Crop & Resize Data Augmentation . 109

6.3.1 Method . 109

6.4 Training Architecture . 110

6.5 Training Objective . 112

6.5.1 Calculating � . 113

6.5.2 Learning E . 113

6.5.3 Learning the Task . 115

6.5.4 Preventing Feature Collapse . 115

6.6 Training Procedure . 117

6.6.1 Model Pretraining . 117

6.6.2 Domain-based Curriculae . 118

6.7 Network Architecture . 119

6.8 Baselines . 119

6.9 Evaluating uncertainty estimation on narrow target domains 121

6.9.1 Source: Cityscapes, Target: SAX Test Datasets 122

6.9.2 Effect of distributional shift . 124

6.9.3 Source: Cityscapes, Target: KITTI & BDD 126

6.9.4 Source: BDD, Target: SAX Test Datasets 128

6.10 Evaluating uncertainty estimation on a general target domain 132

6.10.1 Target: WildDash . 132

6.11 Miscellaneous experiments . 133

6.11.1 Calculation of the optimal threshold . 134

6.11.2 Calculating thresholds across domains 135

6.11.3 Latency Evaluation . 136

6.12 Qualitative Results . 137

6.13 Ablation Studies . 139

6

6.13.1 Estimating Uncertainty via Distance to Prototypes 139

6.13.2 Importance of target domain images . 139

6.13.3 Importance of M� in the training objective 141

6.13.4 Importance of Branch Asymmetry . 141

6.13.5 Importance of L
u and L

p . 142

6.13.6 Importance of Crop-and-Resize Data Augmentation 142

6.13.7 Importance of using hard M� . 143

6.13.8 Possibility of class-wise thresholds . 143

6.13.9 The need for large batch sizes to calculate prototypes 144

6.14 Conclusion . 146

7 Learning Uncertainty Estimation with Masking & Foundation Models 147

7.1 Foundation Models . 149

7.1.1 Preliminaries on Foundation Models . 149

7.1.2 Foundation Models for Semantic Segmentation 149

7.1.3 Model Distillation . 151

7.2 Uncertainty Estimation for Foundation Models 152

7.3 Training Framework . 153

7.4 Uncertainty Training . 154

7.4.1 Learning Uncertainty Estimation . 155

7.4.2 Avoiding Feature Collapse . 158

7.5 Masked Image Modelling for Uncertainty Estimation 159

7.5.1 Background . 159

7.5.2 Motivation . 160

7.5.3 Masking Policy . 161

7.6 Experimental Setup . 162

7.6.1 Network Architecture . 162

7.6.2 Network Initialisation . 162

7.6.3 Data . 163

7.6.4 Baselines . 164

7.7 Experiments and Results . 165

7

7.7.1 Different Target Domains . 166

7.7.2 Freezing E . 167

7.7.3 Comparing perturbation methods . 168

7.7.4 Freezing f✓ . 169

7.8 Conclusion . 169

8 Conclusion 171

8.1 Summary . 171

8.2 Closing Remarks . 174

Bibliography 174

8

Chapter 1

Introduction

Contents

1.1 Motivation . 9

1.2 Semantics in Robotics . 10

1.3 Mitigating Distributional Shift . 11

1.3.1 Reduction of Distributional Uncertainty 11

1.3.2 Estimation of Distributional Uncertainty 12

1.3.3 To reduce or detect? . 13

1.4 Thesis Structure . 13

1.1 Motivation

Robots take actions in the real-world, and so it is of paramount importance that the safety

of their deployment is carefully considered. One way of doing this uses the concept of

an Operational Design Domain (ODD), which defines a set of operating conditions under

which a robot has been designed and empirically shown to operate safely [1].

More and more, robotic systems are being designed to make use of deep learning, where

complex tasks can be learned directly from training data. This includes perception tasks [2]–

[4], planning tasks [5]–[7], control tasks [8]–[10], or the entire system from perception to ac-

tion [11]–[13]. Deep learning systems typically achieve their best task performance for input

data that is similar to the training data. Therefore, in order to deploy a system, we prepare

9

a training dataset from the operating conditions in the ODD, and empirically evaluate the

robot in these conditions to make sure performance is sufficient.

However, if we consider deploying a robot into a dynamic real-world environment, there

is no guarantee that these operating conditions remain constant for the duration of the de-

ployment. For example, in outdoor settings, weather may change, the sun may come out,

the street furniture may be modified, never-before-seen dynamic objects may appear etc.

This causes a distributional shift of the data input to the system, and can lead to dangerous

and unpredictable robot behaviour unless mitigated.

One option to mitigate this is to extend the ODD to include each of these additional

factors of variation. However, preparing a dataset of this kind is inherently difficult for

dynamic and diverse environments.

Therefore, this thesis investigates the alternative option of designing a system that has a

strong sense of the boundaries of its ODD, and is able to detect when it is no longer operating

within it. The focus of this thesis is constrained to the important perception task of semantic

segmentation of RGB images, in which every pixel is assigned to a semantic class.

1.2 Semantics in Robotics

It is vital for a robot to have not just a geometric, but a semantic understanding of its sur-

roundings. To appreciate this, we will describe the importance of semantics in three basic

steps of robot operation.

Firstly, robots must understand where they are in the environment. Semantics are useful

for this as they provide a high-level description of a scene. This can be used to determine

which objects are dynamic or ephemeral, and which objects are static and permanent. The

latter are the elements to focus on to solve the problems of localisation and odometry, while

the former introduce noise and uncertainty to these problems, as discussed in [14]. Addi-

tionally, describing a scene in terms of high-level semantics is more memory efficient than

using appearance-based methods, resulting in smaller maps and lower cost localisation, e.g.

[15].

Secondly, robots need to plan a path towards a goal location. Traversing man-made en-

vironments often involves following rules, such as staying within lane markings, following

10

traffic signs or sticking to the pavement. These rules require the extraction of semantic infor-

mation from the static world, such as performed in [16]–[19]. On the way to a goal location,

detecting dynamic objects is a key step in obstacle avoidance, and can be aided by the delin-

eation between semantic objects, such as in [20], [21].

Thirdly, once the robot has reached its location, it has to perform a task. Most tasks that

we might want robots to perform are best defined in terms of higher-level semantics, rather

than geometry, e.g. pick the apples in an orchard [22], detect people in a search and rescue

setting [23], clean the dirt on the floor in an office environment [24]. Therefore, identifying

semantic entities is often a necessary step in solving the task of interest.

For these reasons, it is a key robotics task to localise task-relevant semantic classes within

images. Therefore, this thesis considers the task of semantic segmentation, which assigns a

class to each pixel in an image. This thesis focusses on this task in the context of autonomous

driving, and how it might be solved with a consideration of its safety-critical nature.

1.3 Mitigating Distributional Shift

As introduced in Section 1.1, it is vitally important that distributional uncertainty – i.e. that

which causes errors due distributional shift – does not lead to dangerous unknown or un-

intended scenarios. Consequently, one or both of the following steps ought to be taken: (1)

the distributional uncertainty is reduced, (2) the distributional uncertainty is detected, and

risk-mitigating measures are taken.

1.3.1 Reduction of Distributional Uncertainty

Reducing the distributional uncertainty is equivalent to increasing the breadth of the safe

operating conditions defined in the ODD. This can be achieved by collecting and annotating

a larger and more diverse training dataset for the segmentation model. However, to ensure

safe deployment, this labelled dataset needs to be an approximation of any and all of the

possible scenes that the robot is likely to come across during a deployment. The scale of

this dataset would therefore be vast, and so would the resource cost be. For example, the

annotation and quality control for a single image of the Cityscapes dataset [25] took 1.5

11

hours, meaning the entire dataset of 5000 images took 7500 hours, or 312.5 days to annotate.

An alternative solution to the problem is domain adaptation. In this framework, there is

a labelled dataset from one domain, named the source domain. There is also another dataset

of unlabelled images or a small number of labelled images from a distributionally-shifted

domain, named the target domain. The domain adaptation task is to train on data from both

the source domain and the target domain, in order to reduce the error rate on a test dataset

in the target domain. Suppose the source domain is defined by images inside the ODD,

and the target domain is a set of images of scenes outside of the ODD. There are methods

that exist to train on an unlabelled target domain dataset [26]–[29], which in this case would

extend the ODD.

Lastly, an increasingly prevalent method for reducing distributional uncertainty is to

initially train a model on a very broad distribution of unlabelled natural images using Self-

Supervised Learning (SSL), as demonstrated in [30]–[32]. This model can subsequently be

leveraged to solve a range of computer vision tasks on a range of different datasets.

1.3.2 Estimation of Distributional Uncertainty

Alternatively, instead of extending the ODD, a robot can detect its limits by performing

distributional uncertainty estimation. As we are interested in the pixel-wise task of semantic

segmentation, we are also interested in pixel-wise distributional uncertainty estimation, i.e.

detecting pixels that are incorrectly segmented due to distributional shift.

When a robot system detects an image region which is unknown and incorrectly seg-

mented, it is then given the opportunity to improve the safety of the system by dealing

with this event appropriately. As an example, if this image region overlaps with the robot’s

planned trajectory, then it can decide to perform a risk-minimising manoeuvre (e.g. smoothly

coming to a stop) and hand-over to a human operator. Therefore, if a robot is forced out of its

ODD, it can ‘fail gracefully’, and can be prevented from making decisions using an incorrect

understanding of its surroundings.

12

1.3.3 To reduce or detect?

This thesis focusses on the estimation of distributional uncertainty, but ultimately both ap-

proaches are important research directions, as they reduce the error rate in orthogonal man-

ners. The justification for the focus of this thesis is based on the fact that distributional

uncertainty cannot currently be fully reduced, and perhaps never will be for all settings.

Due to the recent advent of foundation models in computer vision [30], [31], it is increas-

ingly possible to train models to accurately perform computer vision tasks on an extremely

broad distribution of images. However, we suggest that there will still be utility in specialist

models trained to perform well on specific image domains. This could be true for reasons of

(1) accuracy, i.e. models fine-tuned on a specific image domain outperform models trained

on all images, or (2) inference cost, i.e. smaller neural networks use less memory and have

a lower latency, but are less expressive and so only perform well on a subset of all natu-

ral images, or (3) training cost, i.e. training on large datasets is time-consuming and costly,

therefore smaller or more specialist models have utility in these settings.

In these contexts, these smaller or more specific models have no need to be able to per-

form their task for the entirety of the natural image distribution, and therefore high-quality

uncertainty estimation will be a key driver of their safe deployment into the world.

A second reason is that it is likely to be easier to detect distributional uncertainty than

reduce it, as will be discussed further in Section 3.2 and Section 5.1. Broadly, this is because

detecting distributional uncertainty requires the model only to discriminate between the

classes within the ODD, and those outside of it. Crucially, it removes the requirement to

discriminate between each of the semantic classes that are not within the ODD, and thus

this task is less complex than reducing distributional uncertainty.

1.4 Thesis Structure

This thesis is about taking steps to solve: the estimation of distributional uncertainty to

mitigate the effects of distributional shift on the task of semantic segmentation for mobile

robotics . This is achieved by proposing three methods, which are presented in Chapter 5,

Chapter 6 and Chapter 7, as well as in the following publications:

13

• D. Williams, M. Gadd, D. De Martini, and P. Newman, “Fool Me Once: Robust Selec-

tive Segmentation via Out-of-Distribution Detection with Contrastive Learning”, IEEE

International Conference on Robotics and Automation (ICRA), 2021.

• D. Williams, D. De Martini, M. Gadd, and P. Newman, “Mitigating Distributional Shift

in Semantic Segmentation via Uncertainty Estimation from Unlabelled Data”, IEEE

Transactions on Robotics (T-RO), 2024.

• D. Williams, M. Gadd, P. Newman, and D. De Martini, “Masked �-SSL: Learning Un-

certainty Estimation via Masked Image Modeling”, IEEE International Conference on

Robotics and Automation (ICRA), 2024.

As will be discussed throughout this thesis, the thread that ties these methods together

is that they each seek to learn distributional uncertainty estimation directly from out-of-

distribution (OoD) training data, however they are tailored to use different types of training

datasets to achieve this.

Before these methods are presented, Chapter 2, Chapter 3 and Chapter 4 provide crucial

background information on the task of interest, and this ultimately motivates the methods

in the later chapters.

Chapter 2 introduces the task of semantic segmentation, the deep learning methods used

to solve it, and the notation used in this thesis. It then discusses the effect of distributional

shift of these methods, and the concept of neural network miscalibration, which limits these

methods’ ability to detect distributional shift. Finally, it discusses the implications of mis-

calibration in the context of safety-critical robotics.

Chapter 3 firstly investigates the nature of distributional uncertainty, and contributes a

useful framing of it. The existing literature related to distributional uncertainty estimation,

namely uncertainty estimation and OoD detection, is then presented. The discussion of this

literature is conditioned on this chapter’s framing of distributional uncertainty, as well as

the constraints of mobile robotics. The chapter concludes with a discussion of the themes of

research that will be found in our proposed methods in Chapter 5, Chapter 6 and Chapter 7.

Chapter 4 discusses the datasets and model evaluation strategies used in this thesis, with

a focus on our mobile robotics setting. This includes a dataset that has been developed over

the course of this thesis, for the specific problem of measuring the quality of distributional

14

uncertainty estimation across a range of magnitudes of distributional shift. This chapter

also introduces misclassification detection, which is the task used to measure the quality of

uncertainty estimation.

Chapter 5 introduces the first of our proposed methods, where the training task is for-

mulated as a large-scale pixel-wise OoD detection problem. The key contributions are: (1) a

training algorithm that uses contrastive learning to leverage a large-scale image recognition

training dataset, (2) a data augmentation technique that combines in-distribution and OoD

instances within the same images, and reduces the distributional shift between the OoD

dataset and the in-distribution dataset, allowing for more pixel-wise robust OoD detection.

Next, Chapter 6 presents the second of our proposed methods. Instead of using a large-

scale image recognition dataset as in Chapter 5, this work instead uses a dataset that is

distributionally shifted from the source domain, but is still real-world driving data. This is

because this type of dataset naturally contains in-distribution and OoD instances within the

same image, and the OoD instances are more subtly different. This choice, however, brings

many challenges as there is no supervision provided by this dataset. The key contributions

of this chapter are: (1) a training algorithm that uses unlabelled target domain data to learn

distributional uncertainty estimation, (2) an extensive set of experiments that evaluate the

quality of uncertainty estimation for a wide variety of benchmarks.

Finally, Chapter 7 presents the last of our proposed methods. This uses a similar formu-

lation to the previous chapter, but introduces the use of foundation models, which emerged

over the course of this thesis. In this sense, this method uses a large-scale image recogni-

tion dataset in addition to the distributionally-shifted driving dataset used in the previous

chapter. The key contributions for this work are: (1) a framework for fine-tuning a founda-

tion model to solve a specific task, while also learning to maintain generality for uncertainty

estimation (2) a method using masked image modelling, instead of the data augmentation

used in Chapter 6, to train a fine-tuned segmentation network to perform uncertainty esti-

mation without the requirement for ground-truth, (3) an empirical investigation on the effect

of foundation model pre-training on quality of uncertainty estimation.

Finally, Chapter 8 summarizes the contributions of this thesis.

15

Chapter 2

Introduction to Semantic Segmentation

Contents

2.1 Semantic Segmentation Preliminaries . 17

2.1.1 The Task . 17

2.1.2 Deep Semantic Segmentation Networks 17

2.1.3 Neural Network Training . 18

2.1.4 State-of-the-Art Methods . 19

2.2 Overfitting . 21

2.3 Calibration of Deep Neural Networks . 22

2.3.1 Calculating Calibration . 23

2.3.2 Observations of Miscalibration . 24

2.3.3 Causes of Neural Network Miscalibration 25

2.4 Conclusion . 28

This chapter introduces the task of semantic segmentation, the current methods used to

solve it, and the limitations of these methods for robots operating in diverse and dynamic

environments. In Section 2.1, the notation to be used throughout this thesis is presented,

along with detail about how deep segmentation networks are designed and trained. Sec-

tion 2.2 discusses how large neural networks are prone to overfitting and Section 2.3 de-

scribes the concept of calibration and the empirical findings of neural network miscalibra-

tion. The chapter ends with Section 2.4, which discusses the implications of neural network

16

calibration when deep semantic segmentation networks are used as components of robotic

systems.

2.1 Semantic Segmentation Preliminaries

2.1.1 The Task

Semantic segmentation of RGB images is a task that requires the estimation of the semantic

class of every pixel in an image. We firstly define a set of K semantic classes, K = {k1, . . . kK},

that are of interest for a given setting. These classes are then visually defined using N natural

RGB images, X 2 RN⇥3⇥H⇥W with corresponding pixel-wise labels Y⇤
2 RN⇥H⇥W , resulting

in a dataset D = {X,Y⇤
}.

The semantics are encoded in a given label y⇤
⇢ Y⇤ by assigning each pixel to the index

of the semantic class, y⇤
2 {n 2 Z | 1  n  K}

H⇥W . The dataset D jointly defines which

classes are of interest, and the appearance they take.

For a given RGB image x 2 R3⇥H⇥W , the semantic segmentation task is to return a seg-

mentation map, y 2 {n 2 Z | 1  n  K}
H⇥W , which is identical to the corresponding label

y⇤
2 {n 2 Z | 1  n  K}

H⇥W .

2.1.2 Deep Semantic Segmentation Networks

Semantic segmentation performance has increased enormously over the last decade due to

the application of deep learning to the problem. The availability of large pixel-wise anno-

tated datasets, innovation in neural network architectures, and decrease in cost of parallel

compute has made this possible.

Therefore, a typical solution to the semantic segmentation problem is to train a neural

network f✓, which is parameterised by ✓. A segmentation neural network f✓ typically re-

turns unnormalised log-probabilities for each pixel and each class, which are referred to as

logits, l = f✓(x) 2 RK⇥H⇥W . From this, we can obtain the estimated segmentation map via

y = argmax(l).

Additionally, we might also want to consider the per-pixel categorical distribution p 2

[0, 1]K⇥H⇥W . For a pixel location i, pixel value x = xi 2 R3 and pixel-wise segmentation

17

y = yi 2 R1, this distribution is given by pi = p(y|x) 2 [0, 1]K . Note that in truth, the

categorical distribution for a given pixel is conditioned on the entire input image, so should

be represented as p = p(y|x), however p(y|x) is used for the sake of simplicity. This is

expanded as:

pi = p(y|x) = [p(y = k1|x), . . . , p(y = kK |x)] 2 [0, 1]K (2.1)

This is typically calculated as:

p(y|x) = softmax⌧ (li) = softmax⌧ ([li,1, . . . , li,K]) (2.2)

This is using the softmax function softmax, which can be calculated for a given tempera-

ture ⌧ as:

softmax⌧ (zj) =
exp(zj/⌧)

P
K

k=1 exp(zk/⌧)
(2.3)

If the subscript ⌧ is omitted, then assume that ⌧ = 1.

This is of great interest to this thesis, as p(y|x) communicates the degree of certainty with

which a given pixel is assigned a class by either considering its entropy, where entropy is

higher for less certain estimates, or via the max softmax score, pmax = max[p(y|x)] which

represents the model’s confidence, for which higher values indicate lower uncertainty.

2.1.3 Neural Network Training

For supervised semantic segmentation training, we have a labelled training dataset D =

{X,Y⇤
} where an image-label pair can be sampled as the n

th element: (x,y⇤) = (Xn,Y⇤
n
),

where x 2 R3⇥H⇥W and corresponding pixel-wise labels y⇤
2 {n 2 Z | 1  n  K}

H⇥W .

A given segmentation network with parameters ✓, is represented by the function f✓. The

model parameters can be estimated by using Maximum Likelihood Estimation (MLE), such

that the likelihood of the observed data is maximised.

The likelihood function is defined as:

L(✓;D) =
NY

n=1

H⇥WY

i=1

p(y|x; ✓)

In practice, we maximize the log-likelihood, which turns products into sums and is nu-

18

merically more stable. This is made possible as log is a monotonically increasing function,

and so the optima of g are the same as that of log (g).

log L(✓;D) =
NX

n=1

H⇥WX

i=1

log p(y|x; ✓)

This is ultimately equivalent to minimising the cross-entropy loss, H, where H[p, q] =

�
P

qlog(p) and q represents one-hot encoded labels.

Therefore the parameters can be estimated by minimising:

Ls =
NX

n=1

H⇥WX

i=1

ȳ
⇤ log p(y|x) (2.4)

Where ȳ
⇤
2 {0, 1}K is the one-hot encoded label for a pixel location i, ȳ

⇤ = ȳ⇤
i
, where

ȳ⇤
2 {0, 1}K⇥H⇥W . Using Ls, the parameters ✓ are updated iteratively using a variant of

stochastic gradient descent:

✓ ✓ � ↵
@Ls

@✓

where ↵ is the learning rate, and @Ls
@✓

is the gradient of the loss with respect to ✓.

An illustration of this method can be seen in Figure 2.1, in which a 2D toy problem

is solved using a linear model, in contrast to the higher-dimensional problem of semantic

segmentation of RGB images, solved with a significantly more expressive non-linear models.

2.1.4 State-of-the-Art Methods

The primary aspects of a method for maximising semantic segmentation performance is to

use as large and diverse a labelled training dataset as possible, in conjunction with a large

and expressive deep semantic segmentation network.

There has been considerable innovation in the field of neural network architectures used

for semantic segmentation. Typically, an encoder-decoder network architecture is used. An

encoder E✓ : R3⇥H⇥W
! RF⇥h⇥w embeds an image as a feature map of high latent dimension

F and smaller spatial dimensions (h, w). The decoder D✓ : RF⇥h⇥w
! RK⇥H⇥W then trans-

forms this feature map into per-pixel unnormalised log-probabilities, i.e. the logits. Overall,

we have l = D✓ � E✓(x), where � represents the function composition operator.

19

Figure 2.1: A toy problem for which a multi-class logistic regression model is trained with
maximum likelihood estimation. Each class probability is plotted separately, along with the
decision boundaries and the model confidence, pmax.

The differences in semantic segmentation methods often relates to differences in the de-

sign of E✓ and D✓. The first approaches of this type used fully-convolutional networks [33],

which adapted image classification networks by removing the flattening and multilayer per-

ceptron (MLP) layers. More recently, the encoder has been chosen to be the best-performing

encoder for supervised, or self-supervised image classification. This is because in image clas-

sification, the semantic object of interest could exist across many scales, and be anywhere in

the image, therefore the encoder must extract high-level semantic features from across the

entirety of the image. This is evidenced by top-performing segmentation networks [33],

20

[34]1 being initialised with the encoder weights from classification networks trained on the

ImageNet.

For many years, the best-performing image classification networks and semantic seg-

mentation networks were based on the ResNet encoder [35] architecture. Currently, SOTA

encoders are now variants of the Vision Transformer (ViT) architecture [36], which applies

the Transformer architecture [37], which originates from the Natural Language Processing

(NLP) community, to computer vision. As for decoders, there are a great number of possible

choices [38]–[40], and the decision made in each our presented methods are described in

their relevant chapter.

2.2 Overfitting

The parameters ✓ of f✓ define a hypothesis space of functions, each of which are a possible

solution to a problem. Supervised training on a labelled training dataset via a suitable op-

timisation technique, e.g. stochastic gradient descent, allows us to search this hypothesis

space for the optimal function f⇤
✓

for the task at hand.

Given that the labelled training dataset is inherently a limited representation of the data

distribution of all possible images, f✓ typically learns a bespoke function which is optimal

only for this set of images. This means that even if the test images come from the same

data distribution as the training images, the loss and error rate will be higher on these test

images, as they do not belong to the training set. In Figure 2.2, the problem of overfitting is

illustrated by presenting two models, which are optimised using different sets of data.

As described in Section 2.1.4, f✓ is typically a very expressive neural network with a large

number of parameters. This means that the hypothesis space of functions is very large, and

it has often observed that this readily leads to overfitting, as shown in [41], [42].

A variety of methods can be used to prevent this, such as regularisation and use of vali-

dation data for early stopping. It is nonetheless inevitable when we perform empirical risk

minimisation (i.e. choosing the model that has the lowest loss on the provided data), that f⇤
✓

will only be optimal for a subset of all possible data.
1Both Fully-Convolutional Networks [33] and Mask R-CNN [34] were state-of-the-art (SOTA) methods

upon publishing in 2015 and 2018 respectively.

21

(a) Overfit model (b) Optimal Model

Figure 2.2: Two models illustrating the problems of overfitting. In (a) a logistic regression
model is trained to maximise the likelihood of the training data. In (b) another logistic
regression model is trained to maximise the likelihood for all data, demonstrating what an
optimal model looks like. In contrast to (b), the model in (a) is optimal only for the training
data, and not the test data which belongs to the same class, but is differently distributed.
This illustration shows that models trained with maximum likelihood estimation are biased
towards only being optimal on the provided data, and thus prone to overfitting.

There are two possible ways in which the loss can be high on unseen data, it can either

relate to (1) confident but incorrect class assignment with low entropy and high pmax, or (2)

ambiguous class assignment, i.e. high entropy and low pmax. The former is a safety con-

cern, as without labels this is indistinguishable from confident and correct class assignment.

However, the latter provides us with information about the limits of the ODD. The rela-

tionship between a network’s pmax and accuracy is the topic of model calibration, which is

discussed in the next section.

2.3 Calibration of Deep Neural Networks

A neural network’s calibration refers to how model confidence pmax correlates with accuracy.

It is desired that the confidence is lower when the model is less accurate, and higher when

the model is accurate. This is illustrated in Figure 2.3, where a well-calibrated model and a

poorly calibrated model are presented.

22

It has been shown in many experiments [43]–[45] that, for the task of classification,

the calibration of many neural networks is poor for both independent and identically dis-

tributed (i.i.d.) and OoD data. Given that most methods treat semantic segmentation as a

pixel-wise classification problem, these findings directly carry over to our problem of inter-

est.

Firstly, Section 2.3.1 describes how calibration is formally measured. Then in Section 2.3.2,

we will discuss the empirical findings in the literature, and then possible causes in Sec-

tion 2.3.3. Finally, Section 2.4 discusses miscalibration in the context of robotics.

2.3.1 Calculating Calibration

In order to measure the calibration of a segmentation network f✓, we firstly use f✓ to segment

a set of N images, Y = f✓(X) where Y 2 {1, . . . , K}
N⇥H⇥W , X 2 RN⇥3⇥H⇥W . We then

split the predictions into M bins based on the confidence of the predictions, Pmax = max �

softmax � f✓(X), such that the bins B1:M contain predictions with confidence [0 : 1
M

,
1
M

:

2
M

, . . . ,
M�1
M

: 1]. The accuracy and confidence is then calculated for each bin:

Acc(Bm) =
M

NHW

NHW

MX

i=1

[yi = y⇤
i
] (2.5)

Conf(Bm) =
M

NHW

NHW

MX

i=1

[pmax]i (2.6)

Finally, the model’s calibration can by evaluated with the expected calibration error,

ECE, as seen in [43], [44]:

ECE =
1

M

MX

m=1

|Acc(Bm)� Conf(Bm)| (2.7)

This means that the model calibration will be high when the model’s confidences broadly

correlates with the model’s accuracy. Note that this does not directly measure if the model

confidence for a single pixel can be used to estimate the model’s accuracy for that pixels, but,

in contrast with metrics presented later in this thesis, it takes a broader and more statistical

view.

23

(a) Poorly calibrated model

(b) Well calibrated model

Figure 2.3: In this figure, two MLPs are depicted as being trained to similar accuracies on
the training data. In (a), the model is well-calibrated as it misclassifies a cluster of test data
in the top left, however it is also has low confidence about this classification, and therefore
confidence is predictive of accuracy. However in (b), the model similarly misclassifies the
top-left cluster of test data, but it is as confident about this inaccurate classification as it is
for accurate classifications.

2.3.2 Observations of Miscalibration

In [43], it is empirically determined that the calibration of modern2 neural networks is very

poor compared with the older smaller networks for classification tasks. Calibration is mea-

sured on test datasets that are i.i.d. with respect to the training dataset, and over-confidence

is consistently observed for a number of different classification network architectures. This

shows that MLE pushes up the probability mass for the training examples, resulting in high
2modern as described in 2017

24

pmax values, but it also increases the probability of unseen examples resulting in poor cal-

ibration. A great number of works (e.g. [43], [46]–[49]) make similar observations when

testing on i.i.d. data.

There are also a number of different works that test the calibration of neural networks on

OoD test data. In this setting, model accuracy will likely drop significantly between training

and testing, and so the question is therefore: to what extent is there also an appropriate

drop in model confidence? In a broad set of experiments, [45] shows that the calibration of

neural networks becomes poorer as distributional shift increases. This is also not mitigated

by tuning the temperature parameter in the softmax function on an i.i.d. validation dataset,

such that the mean confidence on this data equals the mean accuracy. This implies either

that the network cannot detect OoD instances or that it can, but ignores this information in

the calculation of pmax. As a result, ranking pixels by their pmax value is not an effective

method for detecting error due to distributional shift. This observation is corroborated by

the findings in [44], which experiments over different classification tasks and a large range

of recent neural network architectures (e.g. Vision Transformers [36], ResNet variants [35],

non-convolutional MLP Mixers [50]).

For classification, and therefore pixel-wise classification, the fact that pmax is a poor es-

timator of the decrease in accuracy due to distributional shift is a key motivator for the

methods presented in this thesis.

2.3.3 Causes of Neural Network Miscalibration

For the task of classification (and therefore also for pixel-wise classification), there are a

number of possible factors that are suggested to contribute to neural network miscalibration.

Effect of the Cross-Entropy Objective

We can reason about the effects of the cross-entropy objective on model miscalibration in

the following way. If a neural network is estimating p(y|x) via the softmax function, then

p(yj|x) = exp(lj)P
K

k=1 exp(lk)
. The targets are one-hot encoded labels, and so to fully minimise the

cross-entropy, it is required that either exp(lj) tends to infinity, or
P

k2K, j 6=k

exp(lk) tends to

zero. This means that for a correctly classified image, the neural network can best reduce

25

the loss by outputting logits values lj with very large magnitudes (positive for the logit cor-

responding to the correct class, and negative for the rest). For incorrectly classified images,

the neural network should produce a high entropy p(y|x) to minimise the loss, as the loss

increases the more confident an incorrect class assignment is. This can be achieved with

logits that can be large or small, as long as they are roughly equal due to the ‘translation in-

variance’3 of the softmax function, discussed in [51]. This incentive for the model to produce

large logit values leads to miscalibration.

As a result of this reasoning, the motivation of [48], [49], [51] is to address the effect of

the cross-entropy objective by proposing alternative objective functions. Label smoothing

is proposed in [52] where the model is optimised to minimise the cross-entropy between

p(y|x) and the one-hot labels, but also to minimise the distance between p(y|x) and the uni-

form distribution. The effects of this for calibration are described in [48]. The focal loss,

originally proposed in [53], can be used in a similar manner, as described in [49]. The lat-

ter also discusses how using only the cross-entropy objective leads to weight magnification,

and suggests regularisation as a way to mitigate this problem.

Effect of Model Size and Architecture

In [43], large model capacity is cited as a driver of miscalibration when used in conjunction

with the cross-entropy loss. Typically, large expressive neural networks will achieve a high

accuracy on the training set, and so there will be a particularly large bias in the logit distri-

bution towards very large logit values. [43] reports that while the higher capacity models

have a better test accuracy and so generalise better in terms of accuracy, they do not in terms

of calibration.

The testing in [43] is performed on in-distribution data exclusively, but [44] investigates

the calibration of large models for in-distribution and OoD, in addition to using more recent

image classification backbones, such as Vision Transformers [36] and MLP Mixer [50].

The findings in [44] corroborate the findings in [43], in that the calibration of higher

capacity models on in-distribution data is worse than lower capacity models. It shows that

this is also the case is you use temperature scaling to calibrate the mean confidence value on

validation data. It, however, shows that higher capacity models perform better in terms of
3i.e. softmax(x) = softmax(x+ �), therefore the values are determined by relative, not absolute, magnitude.

26

calibration on OoD data.

It is worth noting that in [44], all models were pretrained on large diverse datasets, be-

fore being fine-tuned in a supervised manner on ImageNet. Therefore, both the training and

pretraining expose the models to a large diversity of natural images, which acts as a regu-

lariser. This is in contrast to training or fine-tuning large capacity models on less diverse

datasets, e.g. driving datasets, and therefore these reported results are relevant primarily

for large-scale image recognition tasks.

Another finding of [44] is that neural network architecture had an effect on model cali-

bration when adjusted for model capacity and the extent of model pretraining. Vision trans-

formers and MLP Mixers tended to be more calibrated than convolutional architectures,

such as ResNet-based architectures.

Effect of Activation Function

[54] suggests that another factor which contributes to miscalibration on OoD data is the

Rectified Linear Unit (ReLU) activation function. This choice of activation function produces

piece-wise linear decision boundaries, which produce polytopes4 in feature space assigned

to each class. They describe how this results in the possibility of yielding features assigned

to a known class, but which are infinitely far away from the training data. Therefore, if a

OoD data point is represented as very dissimilar to the training data, it is possible for it to be

assigned a large logit value for one of the classes, and therefore to be very confidently and

incorrectly classified.

Other possible factors

In addition to discussing the cross-entropy objective and large model capacity, [43] also cites

batch normalisation [55] and a lack of weight decay as causes of miscalibration.

Batch normalisation is designed to ensure that, during training, each batch of extracted

features are similarly distributed. During evaluation, the running mean and variance calcu-

lated during training are used to normalise each feature map. By reducing the spread of the

features, it is possible that images that have a strong appearance change from the rest of the
4A polytope is a N-dimensional extension of a polygon.

27

training dataset, and thus would benefit from lower confidence, are represented similarly to

the prototypical class images, for which a high confidence is appropriate. In this way, it is

conceivable that batch normalisation contributes to assigning high confidences to almost all

inputs.

[43] describes that increasing weight decay improves model calibration, and yet de-

creases test accuracy. For this reason, it describes how weight decay is increasingly not

used to the detriment of model calibration. In the experiments in both [43] and [49], it is

shown that neural networks with smaller weight magnitudes are better calibrated, with the

latter performing implicit weight regularisation with the focal loss.

2.4 Conclusion

In this thesis, our objective is to design deep semantic segmentation networks that are suited

to being components of robotic systems. Therefore, the neural networks must be able to

detect when they are within their ODD, and thus have a sufficiently high level of accuracy

for safe autonomous operation.

For this reason, the increasing miscalibration of neural networks due to distributional

shifts is a great concern. It also appears that, in many experiments, this is a problem not of

scale but of ranking. This means that model confidence is not miscalibrated on OoD data

because the mean confidence is inappropriate, but the ranking of pixels by confidence does

not relate to the likelihood of accurate classification, and therefore simple scaling fixes such

as adjusting the softmax temperature are not sufficient. It is therefore of great importance for

us to investigate methods that allow for higher quality estimation of predictive uncertainty,

such as seen in the epistemic uncertainty estimation and OoD detection literature. This will

be investigated in detail in the next chapter.

In addition to robotic systems needing to understand their limits to facilitate safe op-

eration, it is also important that robotic systems are trusted by the humans they interact

with. One way of doing this is to perform accurate uncertainty estimation, and report these

estimates to humans. Humans are typically able to interpret probabilities on an intuitive

level [56], and, if the model predictions are matched with appropriate levels of model confi-

dence, then this can build trust between humans and the systems they share environments

28

with, or are being serviced by. Trust is a key ingredient in the adoption of robots in the

setting of personal transport due to its safety-critical nature, and so the reporting of high

quality uncertainty estimates is an important research direction for this reason alone.

In Chapter 3, we therefore describe the different types of uncertainty, effective methods

for their estimation, and how these relate to our mobile robotics setting.

29

Chapter 3

Uncertainty Estimation in Deep Learning

Contents

3.1 Sources of Uncertainty . 31

3.2 Origins of Distributional Uncertainty . 32

3.3 Epistemic Uncertainty Estimation . 37

3.3.1 Principles for Epistemic Uncertainty Estimation 37

3.3.2 Methods for Epistemic Uncertainty Estimation 39

3.3.3 Discussion . 41

3.4 Aleatoric Uncertainty Estimation . 41

3.4.1 Learned Loss Attenuation . 42

3.4.2 Direct Error Estimation . 45

3.4.3 Generative Modelling . 47

3.4.4 Test-Time Augmentation . 48

3.4.5 Discussion . 49

3.5 Out-of-Distribution Detection . 50

3.5.1 Pretrained Methods . 51

3.5.2 Regularisation-Based Methods . 52

3.5.3 Self-Supervised Learning for OoD Detection 53

3.5.4 Proxy Task Methods . 54

30

3.5.5 Deep Generative Models . 55

3.5.6 Use of Out-of-Distribution Data . 56

3.5.7 Discussion . 57

3.6 Conclusion . 58

The conclusion of Chapter 2 is that deep segmentation networks are not inherently good

at detecting distributional shift, and that this is a problem for mobile robotics applications.

For this reason, this chapter presents and discusses the different methods that have been

developed to mitigate this problem, spanning the fields of uncertainty estimation and OoD

detection.

Firstly, Section 3.1 introduces a dichotomous framework for thinking about uncertainty,

by splitting it into aleatoric and epistemic. This is important as much of the uncertainty

estimation literature frames its work in these terms. Secondly, Section 3.2 discusses how

distributional uncertainty fits into this framework.

Then, for the rest of the chapter, the themes and methods for epistemic uncertainty es-

timation, aleatoric uncertainty estimation, and OoD detection are presented. Each are dis-

cussed both for their broad suitability for mobile robotics, and with reference to the discus-

sion in Section 3.2.

Finally, in Section 3.6, the most promising themes are discussed in more detail. These

themes are key influences on the methods presented in Chapter 5, Chapter 6, and Chapter 7.

3.1 Sources of Uncertainty

Error in computer vision tasks is often presented as originating from two sources of uncer-

tainty: aleatoric and epistemic. Epistemic uncertainty (related to the Ancient Greek, episteme,

for knowledge), is uncertainty that is theoretically under the control of the modeller (i.e. the

person designing the model) and can be reduced by decisions in the model design. Under

this definition, if only epistemic uncertainty exists, then the following is true: there theoret-

ically exists a model architecture defined by f⇤, which can be trained by a optimal dataset

and optimiser to yield parameters ✓
⇤, such that the trained model f⇤

✓

1 reduces the test error
1Strictly, this should be f⇤✓⇤ , as both the architecture and the parameters are optimal, however f⇤✓ is used for

simplicity of presentation.

31

to zero. For this reason, epistemic uncertainty is due to the suboptimality of the model and

its parameters rather than the input data, and can be reduced by an improved training pro-

cedure, such as a more diverse training dataset, better network architecture, better optimiser

etc.

In contrast, aleatoric uncertainty is uncertainty than cannot be reduced by the mod-

eller. Etymologically, aleatoric is related to the Latin, alea, for dice, bringing up the idea

that aleatoric uncertainty causes error due to the inherent randomness of the observations,

rather than imperfections in the model.

This means that no combination of model, dataset, optimizer can reduce the error on the

test dataset to zero. In outdoor robotics, examples of sources of aleatoric uncertainty include:

noise from the sensor, environmental factors such as fog or darkness, lack of resolution of

objects in the distance, sensor adherents such as rain, snow, or smudges on a camera lens.

The distinction between the types of uncertainty is important for two reasons. Firstly,

knowledge of the uncertainty type should be used to design the method for its estimation,

e.g. if uncertainty primarily originates in the data, then a method should focus its atten-

tion on the data and not the model parameters. Secondly, since epistemic uncertainty is

reducible, estimating it for a dataset of unlabelled images gives the modeller information

about which images to use to improve the model’s accuracy, for example by labelling them

and then training on them. Therefore, estimating epistemic and aleatoric uncertainty sepa-

rately can be useful in an active learning setting to find training examples that are maximally

informative, i.e. those that have high epistemic uncertainty and low aleatoric uncertainty.

The latter is important as images with high aleatoric uncertainty are, by definition, uninfor-

mative, and thus cannot improve the model’s accuracy.

3.2 Origins of Distributional Uncertainty

We have presented a dichotomous framework which defines uncertainty as being either

reducible or irreducible by the modeller. As described in Chapter 1, we are interested in

estimating distributional uncertainty, and so it is worth determining how distributional un-

certainty fits into this framework.

In the context of semantic segmentation, distributional uncertainty can derive from two

32

components: (1) uncertainty due to an instance of an unknown class, i.e. a class not defined

in the labelled training dataset (2) uncertainty due to an instance of known class, but with

an appearance distinct from the instances of the same class in the labelled training dataset,

often called covariate shift [57]–[59].

Theoretically, it can be concluded that distributional uncertainty is epistemic. This is

because it is theoretically possible to design a model that can segment all possible presenta-

tions of all possible semantic classes, represented in Figure 3.1a. A dataset could be collected

that contains diverse presentations of each of the finite number of semantic concepts2. Then,

a sufficiently expressive neural network architecture could be defined with an appropriate

optimizer, and this model could be trained such that the segmentation error on any possible

test dataset would be zero. Note that this is true with the proviso that each semantic ob-

ject needs to be sufficiently well captured in the test images that no aleatoric uncertainty is

present. To some degree, this type of large-scale training has been attempted in works such

as DINOv2 [31], CLIP [30] and Segment Anything [60].

However, for the practical setting introduced in Chapter 1, we can say that distributional

uncertainty cannot be fully reduced by the modeller. Firstly, this is because large-scale vision

models in question cannot classify or segment any test dataset with zero error. Secondly,

the recognition of every possible semantic class requires a model capacity that is far larger

than needed. For example, a 10 class classification problem CIFAR-10 can be solved with

92.74 % top-1 accuracy by kMobileNet V3 Large 16ch [61] with 400 k parameters, while a

1000 class classification problem ImageNet-1k requires Florence-CoSwin-H [62] with 893 M

parameters to achieve a 90.05 % top-1 accuracy, with the latter incurring significantly more

latency and GPU memory usage. In addition, the cost of this large-scale training – in terms

of cost of GPUs or cloud credits – is prohibitively expensive for many settings. For example,

CLIP [30] was trained on 256 NVIDIA V100 GPUs for two weeks, equivalent to costing in the

order of $100,000s. This means that even if these types of model did allow us to fully reduce

distributional uncertainty, there are currently significant challenges with both training and

deploying them.

In summary, this shows that distributional uncertainty is theoretically epistemic, how-
2If we consider language to be finite and that semantics are ultimately described in language, we can con-

vince ourselves that the number of possible semantic concepts are also finite.

33

(a) Modelling all semantic classes, thus any error is due to epistemic uncertainty.

(b) Modelling only the semantic classes of interest, thus errors due to classes k4:K⇤ relate to aleatoric
uncertainty.

(c) Modelling only the semantic classes of interest, thus errors due to classes k4:K⇤ relate to epistemic
uncertainty.

Figure 3.1: Suppose the set of all semantic classes is K⇤ = k1, . . . , kK⇤ , but we define a seg-
mentation task in which only the set, K = {k1, k2, k3} are of interest. This figure represents
the possible ways in which we can approach this problem: (a) seeks to segment all classes,
(b) simply ignores the classes not of interest, while (c) adds an additional unknown class K̄

to represent all irrelevant classes. As described this impacts the definition of component (1)
of distributional uncertainty as aleatoric or epistemic.

ever a tractable implementation would not reduce the test error to zero. This raises the

question: Factoring in the current state-of-the-art in computer vision and the constraints of

mobile robotics, is it the case that distributional uncertainty is best treated as epistemic?

In the following sub-sections, the described components of distributional uncertainty

will be discussed in detail. This will subsequently be used to argue that aleatoric methods

can also be used to effectively model distributional uncertainty.

Uncertainty due to unknown classes

It is firstly worth considering the nature of the models and data in use. A labelled train-

ing dataset for semantic segmentation defines a finite set of known semantic classes K =

34

{k1, k2, . . . , kK}, and pixels in the dataset that do not belong to those classes or remain unla-

belled due to ambiguity are assigned to an undefined class kK̄ , often referred to as void.

Typically in benchmarks such as [25], [63], segmentation networks are evaluated with the

test dataset on their ability to segment the known classes only, i.e. the segmentations of the

pixels labelled as kK̄ are ignored. For this reason, it is common for a segmentation network

to produce K logits, one for each of the semantic classes defined by the training dataset. In

this setting, a segmentation network trained on these classes therefore estimates which of

the finite set of known classes a given pixel belongs to, i.e. for each pixel, the model outputs

p(y|x) = [p(y = k1|x), . . . p(y = kK |x)] 2 [0, 1]K , introduced in Section 2.1.2.

In robotics, we need to consider the entirety of the image, and so these void pixels will

contribute to the distributional uncertainty of the test dataset. Under this previous defi-

nition, it is not possible for the segmentation network to correctly segment pixels not in

K. For this model definition, this means that component (1) of distributional uncertainty is

aleatoric, see Figure 3.1b.

However, we could also design a model that produces K + 1 logits, where for each pixel

p(y|x) = [p(y = k1|x), . . . , p(y = kK |x), p(y = kK̄ |x)] 2 [0, 1]K+1. In this case, the final

class K̄ represents any semantic class that is not a known and defined semantic class, see

Figure 3.1c. In this case, and given that labelled pixels for this class exist in typical semantic

segmentation datasets as void, component (1) of distributional uncertainty is epistemic, as

more training data of pixels belonging to class kK̄ will improve segmentation accuracy.

This therefore suggests that this component of distributional uncertainty might be con-

sidered as either epistemic or aleatoric depending on the formulation used.

Uncertainty due to intra-class variation

The second component of distributional uncertainty is due to the intra-class visual dissimi-

larity between the labelled training distribution (i.e. the source domain) and the distributionally-

shifted test distribution (i.e. the target domain). On the surface, this is clearly epistemic as

adding more diversity to the dataset of existing classes will improve segmentation perfor-

mance.

However, much like component (1), this is also a matter of definition, as semantic classes

35

(a) Cityscapes (b) SAX New Forest

Figure 3.2: Images from two datasets demonstrating the subjectivity of semantic classes.
Suppose (a) is an example of an image from a labelled training dataset that defines the se-
mantic classes. If we consider the road class, how does this semantic concept relate to (b)?
Is road defined by the type of road surface, or by the notion of traversability, or by the rules
of the road in this specific geographic location? And therefore which of regions of (b) is it
appropriate to call road? The image in (b) is from our dataset presented later in Chapter 4.

are inherently subjective (illustrated in Figure 3.2). For this reason, it is down to the judge-

ment of the modeller to decide whether an appearance change constitutes the creation of

a new class, or whether this new appearance change is within the definition of the original

class. For example in Figure 3.2b, do all pixels from traversable regions relate to road, or is it

only those from the paved sections of the road? If the former is true, then the distributional

uncertainty associated with those pixels is epistemic as more training images of unpaved

roads would improve segmentation accuracy. However, if the latter is true and ground-

truth label for the pixels to the left of the paved road is unpaved road and not road, then

distributional uncertainty associated with these pixels is aleatoric. This is because the model

cannot segment pixels as unpaved road, and therefore this uncertainty cannot be reduced.

Therefore, much like the previous component, whether distributional uncertainty due to

intra-class variation is aleatoric or epistemic is a matter of perspective.

Summary

Considering both components of our defined components, this analysis has shown us whether

distributional uncertainty is epistemic or aleatoric is conditioned on the modeller’s decisions

rather than being an intrinsic property. Based on this understanding, this thesis also consid-

ers aleatoric uncertainty estimation methods unlike many other works. In fact, given the

computational benefits of aleatoric uncertainty estimation (detailed in Section 3.4.5), these

methods are of particular interest.

36

3.3 Epistemic Uncertainty Estimation

3.3.1 Principles for Epistemic Uncertainty Estimation

As epistemic uncertainty is intrinsic to the model, and not the test data, epistemic uncer-

tainty estimation methods seek to capture how the model parameters relate to model per-

formance for a given input. One framing of this is Bayesian, whereby instead of treating

the model as deterministic, the model parameters are instead treated as random variables,

yielding a Bayesian Neural Network (BNN), such as in [64], [65].

For this, the weight posterior distribution p(✓|D) is considered where ✓ represents the

model parameters, and D the training dataset. Bayes’ Rule tells us that the weight posterior

can be computed as:

p(✓|D) =
p(D|✓)p(✓)

p(D)
=

p(D|✓)p(✓)R
✓
p(D|✓)p(✓)d✓

In this setting, the likelihood p(D|✓) is a measure of how well a given set of parameters fit

the data. The prior p(✓) represents our beliefs about the weights before any data is observed.

p(D) is the model evidence and represents the likelihood of the observed data under all pos-

sible parameterisations of the model, i.e. it is an aggregation of likelihoods p(D|✓) evaluated

for all possible values of ✓. Each of these are used to calculate the weight posterior p(✓|D),

which represents which weight values best explain the observed data.

The predictive distribution is calculated by evaluating the model predictions p(y|x, ✓) for

all possible weight values:

p(y|x,D) =

Z

✓

p(y|x, ✓)p(✓|D)d✓ (3.1)

Epistemic uncertainty is then commonly calculated as either the Predictive Entropy (PE) or

Mutual Information (MI), as described in [66]:

PE = H[p(y|x,D)] = �
KX

k=1

p(y = k|x,D) log p(y = k|x,D) (3.2)

37

MI = H[p(y|x,D)] + Ep(✓|D) [�H[p(y|x, ✓)]] (3.3)

= PE + Ep(✓|D)

"
KX

k=1

p(y = k|x, ✓) log p(y = k|x, ✓)

#
(3.4)

PE is the entropy of the predictive distribution, and represents the total predictive un-

certainty. PE is high when either: (1) the posterior distribution is broad, causing a large

spread in p(y = k|x,D), or (2) the posterior distribution is sharp, however for each possible

parameterisation, the prediction p(y|x, ✓) is of low confidence. As an example, for a binary

classification problem, suppose we sample parameters from p(✓|D) as [✓1, ✓2, . . . , ✓1].

The scenario (1) relates to sampling a wide range of parameter values yielding variable

predictions, such as:

[p(y|x, ✓
1), p(y|x, ✓

2), p(y|x, ✓
3), . . . , p(y|x, ✓

1)] = [(1, 0), (0, 1), (0, 1), . . . , (1, 0)]

which give a predictive distribution of p(y|x,D) = (0.5, 0.5), and thus a PE = 0.3.

The scenario (2) relates to sampling parameter values that are very similar, which give

very consistent predictions, but in this case these predictions are consistently unconfident:

[p(y|x, ✓
1), p(y|x, ✓

2), p(y|x, ✓
3), . . . , p(y|x, ✓

1)] = [(0.5, 0.5), (0.5, 0.5), (0.5, 0.5), . . . , (0.5, 0.5)]

which also give a predictive distribution of p(y|x,D) = (0.5, 0.5), and thus a PE = 0.3.

In contrast, MI focusses specifically on the uncertainty in the weight posterior, by calcu-

lating the difference between the total predictive uncertainty PE and the uncertainty related

to average entropy of each specific model parameterisation Ep(✓|D) [H[p(y|x, ✓)]]. In scenario

(1), MI = PE, as each of H[p(y|x, ✓)] = 0, meaning that the uncertainty due to the weight

posterior makes up the entire predictive uncertainty. However in scenario (2), MI = 0, as PE

and H[p(y|x, ✓)] are the same for each ✓, and thus the uncertainty due to the weight posterior

does not contribute to the total predictive uncertainty. MI is therefore more commonly used

when we want to specifically measure the uncertainty from the parameter distribution, such

as in active learning [66].

Unfortunately, evaluating the weight posterior with exact Bayesian analysis is not tractable

due to the required integration over all possible weight values in the model evidence, and

38

the very high-dimensionality of the model parameter space, ✓. A number of different ap-

proximations are made to solve this, and these are discussed in the next section.

3.3.2 Methods for Epistemic Uncertainty Estimation

One such approximation, named Monte Carlo Dropout (MCD) [64], approximates the weight

posterior p(✓|D) with q(✓) using dropout [41]. Here, a network is trained with dropout lay-

ers yielding N parameters, ✓ = {✓1, . . . , ✓N}, and then at inference time, sets of weights are

sampled from the weight posterior, such that the m
th sample is given by ✓̂

m = {✓̂
m

1 , . . . , ✓̂
m

N
},

where ✓̂
m

i
= ✓i ⇤ zi and zi ⇠ Bernoulli(pdrop). If M sets of parameters are sampled, the predic-

tive distribution is given by:

p(y|x,D) =

Z

✓

p(y|x, ✓)p(✓|D)d✓ ⇡

Z

✓

p(y|x, ✓)q(✓)d✓ ⇡
1

M

MX

m=1

p(y|x, ✓̂
m) (3.5)

And then PE and MI can be redefined for M samples as:

PE = �
KX

k=1

1

M

MX

m=1

p(y|x, ✓̂
m)

!
log

1

M

MX

m=1

p(y|x, ✓̂
m)

!
(3.6)

MI = PE +
1

M

MX

m=1

KX

k=1

p(y = k|x, ✓̂
m) log p(y = k|x, ✓̂

m) (3.7)

Another approach, Bayes-by-Backprop, instead approximates the weight posterior with

a distribution that is itself parameterised, i.e. q(✓, ↵), where ↵ are the parameters defin-

ing that shape of q(·). The general form for how to use variational inference for neural

networks is to fit ↵ by minimising the the variational free energy, F (D, ↵), such that ↵
⇤ =

arg min
↵

F (D, ↵) and:

F (D, ↵) = KL[q(✓|↵), p(✓)]�

Z
q(✓|↵) log p(D|✓)d✓ (3.8)

The first term represents the distance between the variational distribution q(✓|↵) and the true

prior p(✓), while the second term represents how well the variational distribution explains

the observed data.

39

Bayes-by-Backprop is approximates this expression with:

F (D, ↵) ⇡
MX

m=1

log q(✓̂m|↵)� log p(✓̂m)� log p(D|✓̂m) (3.9)

Where M is the number of Monte Carlo samples, and ✓̂
m is a set of model parameters sam-

pled from q(✓̂m|↵). In this way, this method is able to approximate the weight posterior

p(✓|D) with q(✓̂m|↵) and calculate uncertainty as the variance of the predictive distribution

for each of the sampled ✓̂
m. In [65], the authors experiment with both Gaussian and scale

mixture distributions as the priors for Gaussian distributed posteriors.

This method tends to be challenging to train to a high accuracy and tends to increase

training time substantially. This is due to the need to sample sets of parameters and so

there is a trade-off between diversity of sampled weights ✓̂
m and how many forward passes

are required to compute a batch, as discussed in [67]. In order to see as many possible

weight perturbations as possible and to reduce the variance of the gradient updates, we

would want to sample a different ✓̂
m for each batch element. This, however, is extremely

computationally intensive. Additional methods have been devised to try to deal with this

problem, e.g. Flipout [67].

In contrast to methods that draw on a Bayesian underpinning, ensembles have been used

to produce very high-quality epistemic uncertainty estimates [68]. Instead of sampling from

q(·), samples from the weight distribution {✓̂
1
, . . . , ✓̂

M
} are obtained by training M neural

networks independently on the same training data. In order to obtain diversity in the neural

networks, each member of the ensemble is initialised with a different set of random weights

and the training data is presented in a different order. Not only is the training in this method

straightforward, but it also often leads to higher model accuracy.

Similar to the approaches using BNNs, the epistemic uncertainty can be calculated using

PE and MI. Despite the lack of direct Bayesian interpretation, this approach has been very

successful at producing accurate epistemic uncertainty estimates.

40

3.3.3 Discussion

These approaches have been shown to produce high-quality uncertainty estimates (espe-

cially MCD and deep ensembles). They do however have a major drawback relating to their

computational efficiency at training and, most importantly for this thesis, at testing.

In order to obtain an uncertainty estimate for a single image, we require M forward

passes, relating to the M different parameterisations of the neural network. Therefore in

order to run this on a robotic platform, either the memory requirement increases by a factor

of M to maintain latency, or the latency increases by a factor of M . It is typically reported that

an appropriate value for M is 5 or more. Therefore the former is often not possible due to

limited hardware deployed on edge devices, e.g. a NVIDIA Jetson Nano Developer Kit has

only 4 GB of GPU memory which cannot support 5 high accuracy segmentation networks

in parallel. The latter significantly affects safety and usefulness, as a 5⇥ increase in latency

would typically make a segmentation network unsafe for a number of different tasks, e.g.

path planning in dynamic environments.

In order to mitigate this, methods such as [69], [70], distil the uncertainty estimates of

MCD networks and ensembles into a single deterministic neural network. In both cases,

measures of the variance are used as targets, which a neural network is trained to approxi-

mate in a single forward pass. There is naturally a corresponding drop in performance, but

makes the discussed epistemic approaches feasible for mobile robotics settings.

3.4 Aleatoric Uncertainty Estimation

The presence of aleatoric uncertainty means that it is not possible for the modeller to design

a model that fully reduces the error on the test dataset, because aleatoric uncertainty is in-

herent to the data. For this reason, methods that seek to estimate aleatoric uncertainty focus

on the relationship between appearance of image regions and error, rather than the model

parameters and error.

Suppose we are considering a classification task for which we have ground-truth la-

belling, a neural network can be trained to perform both classification and aleatoric un-

certainty estimation as follows. As the cross-entropy classification loss decreases, the error

41

rate on the training and validation data decreases, and thus the epistemic uncertainty has

decreased. This continues to occur until the error rate plateaus at a non-zero value, and the

epistemic uncertainty cannot be further reduced. It can be assumed that for the images that

are still incorrect, there is insufficient discriminative information contained in them for the

model to be accurate3. This might be because of class ambiguity, sensor noise, fog, darkness,

sensor adherents, sensor resolution etc. It is therefore appropriate for a method to be able to

detect these images, and to output a high aleatoric uncertainty for them.

3.4.1 Learned Loss Attenuation

One way of doing this is to have the task model output both a task estimate, e.g. a classifi-

cation estimate, and also an uncertainty estimate. This is often achieved by placing a prior

distribution over the networks outputs, and using a set of methods named learned loss at-

tenuation [71], but also presented previously in [72]. For classification tasks, this is slightly

awkward to think about, and so for readability, this type of method will first be explained

for a regression task, e.g. depth estimation. This sub-section will then subsequently describe

the extension to classification and segmentation tasks.

We define a model g✓ which produces both a regression estimate and uncertainty es-

timate for a given image x: [µ, �
2] = g✓(x). For each image, there exists a ground-truth

regression label y⇤, such that error can be measured as kµ � y⇤
k2. For this formulation, the

model can be trained to perform regression and uncertainty estimation by assuming a Gaus-

sian likelihood. Supposing we have defined a pixel-wise regression task, we can calculate

the loss for each pixel location i as:

L
MLE
i

=
1

2

X

i

kµi � y⇤
i
k
2
2

�
2
i

+
1

2
log(�2

i
) (3.10)

The model can minimise this loss function in two ways: (1) either it can reduce the regres-

sion error kµi�y⇤
i
k2 (minimising the numerator) and estimate a low variance �

2
i
, minimising

log(�2
i
), or (2) it can estimate a large value for �

2
i

(maximising the denominator). The former

of the two options trains the model to solve the regression task, while the latter trains the
3Note that this is an assumption, and it could also be attributed to sub-optimal model architecture, opti-

mizer, training dataset, etc.

42

model to output high uncertainty values when the model cannot sufficiently reduce the er-

ror for a pixel. The 1
2 log(�2

i
) term prevents the loss from being minimised by estimating a

large variance for all pixels, as this term is minimised by �i ! 0.

The formulation above is extended to classification and segmentation problems in [71] by

placing a Gaussian distribution over the logits l, before obtaining the categorical distribution

p with the softmax function. As before, we define a neural network to produce explicit

uncertainty estimates: [l, �
2] = g✓(x), with logits and covariances for each pixel i as li 2 RK

and �
2
i
2 RK⇥K respectively, where the latter is diagonal. The logit distribution is given by:

l̃i ⇠ N (li, �
2
i
) (3.11)

Where now pi = softmax(̃li). The loss function again takes the form of the negative log-

likelihood:

L
MLE
i

= � log softmax(̃li,k=y⇤) (3.12)

Unfortunately, there is no analytical solution to combine the softmax function and Gaus-

sian distribution, and so each l̃i needs to be sampled as l̃i,m,k = li,k + ✏m,k where ✏m,k ⇠

N (0, �2
k
). Incorporating the sampling and expanding for clarity gives us:

L
MLE
i

=
1

M

MX

m=1

�l̃i,m,k=y⇤ + log

KX

k=1

exp(̃li,m,k)

!
⇡

1

M

MX

m=1

⇣
max

k

[̃li,m,k]� l̃i,m,k=y⇤

⌘
(3.13)

The interpretation of this loss is aided by recalling that the log-sum-exp is a smooth ap-

proximation to the max function, as shown in Equation (3.13). The first way in which the

model can reduce the loss is by ensuring that the sampled logit which corresponds to the

correct class is the largest. This can be done by expressing a low corresponding value of �
2
k

and large deterministic logit value lk = y⇤. This allows the model to learn the classification

problem.

Similar to the regression case, the model also learns to estimate uncertainty by using its

estimate �
2 to reduce the loss for misclassified images. A carefully chosen increase to �

2

can increase the noise of the sampled logits, which decreases the confidence of the model

prediction. On average, this can reduce the difference between maxk [̃li,m,k] and l̃i,m,k=y⇤ , and

thus minimise the negative log-likelihood in Equation (3.12).

43

Note that this is similar to simply performing MLE without a Gaussian distribution over

the logits. The key difference in this formulation is that the model learns to reduce the loss

via the explicit estimation of uncertainty �
2, whereas simpler MLE without the Gaussian log-

its trains a model to reduce the loss via implicitly representing uncertainty as high entropy

categorical distributions4.

The formulation in [73] is similar to the classification case for a binary segmentation

problem, but uses an approximation instead of resorting to Monte Carlo sampling from the

Gaussian across the softmax function. It states that the Monte Carlo sampling required 104

samples to converge to the true distribution, and so this approximation is a great help during

training.

In [74], aleatoric uncertainty estimates are learned alongside learning surface normal esti-

mation by using learned loss attenuation with the von Mises-Fisher distribution, a spherical

equivalent to the Gaussian distribution. A 3D super-resolution task is defined in [75], and it

trains a neural network with learned loss attenuation to also estimate aleatoric uncertainty

with a Gaussian regression formulation.

The methods discussed so far have used ground-truth supervision in order to measure

where error has occurred. In contrast, [76], [77] define self-supervised tasks and probabilistic

self-supervised objectives to solve them. A neural network is trained in [76] to estimate the

3D geometry of objects from a single image. The self-supervised task involves learning to

estimate depth and viewpoint via supervision from egomotion and depth from Structure

from Motion (SfM) applied to videos. The estimation of aleatoric uncertainty is motivated

by the need to reduce the noise in the self-supervised task, which is achieved by attenuating

the loss for uncertain depth or viewpoint estimates.

In [77], a neural network is trained to extract geometric features by defining a self-

supervised data augmentation task. Similar to [76], it learns aleatoric uncertainty estimation

in order to mitigate the gradient contributions of image regions where a stable match is not

possible, i.e. where there is insufficient discriminative information to describe a region, such

as feature-less surfaces. For this task, it also uses the learned loss attenuation formulation,
4Note that this is not true for typical regression problems with a mean squared error loss function. In this

case, if the model thinks its estimate is erroneous, there is no recourse for mitigating the loss. In contrast,
classification problems always implicitly model the uncertainty with a categorical distribution, which results
in learning to mitigate large loss values due to misclassification through high entropy estimates.

44

where, in this case, the network output parameterises an exponential distribution.

The learned loss attenuation formulation is built upon in [78] and it introduces one main

idea. It proposes a framework that parameterises each set of intermediate features through-

out the network as a distribution. In this way, not only does the network output its uncer-

tainty in its task estimate, but it also outputs its uncertainty for each feature. The motivation

for this is that when a model only outputs its uncertainty in its output, it must in someway

encode the uncertainty in its features into the features themselves. However, this method

seeks to disentangle this information.

To explain this by way of an example, suppose a cat/dog classification model is given an

image of a monkey. In order to express uncertainty at the output, the model’s features must

describe the monkey in sufficient detail that its features are distinct from that of cats and

dogs. However with this framework, the features can encode the task-specific information

about the image, i.e. how cat-like or dog-like the monkey looks, while the uncertainty over

the features can tell the model to ultimately ignore this information as it looks like neither.

It does this by using variational expectation propagation, in which a neural network

layer’s outputs parameterise a chosen distribution q(·). This is done by using moment

matching (a.k.a. assumed density filtering), as shown below. This means that the distri-

bution at the output of ith layer of neural network f✓ with input z
(i�1)

⇠ q(z(i�1)) is parame-

terised by:

µ
(i) = E

q(z(i�1))[f
(i)
✓

(z(i�1))], �
(i) = V

q(z(i�1))[f
(i)
✓

(z(i�1))] (3.14)

Which for a linear layer f
(i)
✓

(z(i�1)) = Wz
(i�1) + b, is given by E[f(i)

✓
] = Wµ

(i�1) + b,

V[f(i)
✓

] = (W �W)�(i�1), where � is a element-wise product. This work also gives formulae

for how uncertainty can be propagated through other commonly used layers.

In addition to this, when Gaussian distributions are chosen for q(·), [78] shows how the

Dirichlet distribution can be used as the output distribution for classification in conjunction

with these propagated Gaussian feature distributions.

3.4.2 Direct Error Estimation

Instead of using a probabilistic formulation to model the error as a distribution, it is also

possible to simply measure and directly estimate the error during training.

45

For the task of camouflaged object detection, a challenging binary image segmentation

task, [79] does this exactly this. The error for the segmentation network is measured, which

is then used to supervise the training of a separate ‘Online Confidence Estimation Network’,

which poses error estimation as a binary classification problem.

The Segment Anything Model is introduced in [60], which is a foundation model for

image segmentation, and can have its estimated segmentations conditioned on a text or

point-wise prompt. It is trained on a very diverse image segmentation dataset which con-

tains annotation masks that use a range of definitions for what an object is, and thus where

the segmentation boundaries should be. On top of this, while easy for human interaction,

point-wise prompts are sufficiently un-descriptive, that it is often unclear what the correct

segmentation should be, i.e. should it be of the whole object, or the object part, or the object

sub-part? These factors induce ambiguity in the segmentation task, which this work solves

by modelling this uncertainty. The model is trained to output multiple segmentations for a

given input, and then a small neural network is trained on top of the model to predict the

segmentation quality, in terms of Intersection over Union (IoU), of each of these possible seg-

mentations. During inference, the estimated IoUs are used to then rank the output, where

only the most high-quality segmentation is returned. If an image is given to this model,

and the highest-quality segmentation it can produce has a low IoU, then it can be said that

this was due to aleatoric uncertainty. The model was trained on a vast dataset, and is itself

extremely expressive, therefore it is very likely in this case that it was inherently ambiguous

where the segmentation boundaries should be.

Finally, [80], [81], also focus on producing image-wise measures of segmentation quality,

the Jaccard Index and Dice Similarity Coefficient respectively. These are designed for the

clinical setting, where poor quality segmentations can be automatically flagged, leading to

closer inspection by a clinician.

Albeit in a different setting, each of these works broadly align with the objective of this

thesis, as they seek to estimate when segmentation error is higher (or segmentation quality

is lower), such that the effects of this can be mitigated for the broader system.

46

3.4.3 Generative Modelling

Section 3.4.1 considers how to train a neural network to parameterise a distribution at the

network output that captures the variability in its accuracy, and is supervised by the ground-

truth error as provided by a labelled training dataset. An alternative approach is to train a

segmentation network to parameterise a distribution, which captures the variability in plau-

sible segmentations for a given image. The major motivation for this method is to represent

uncertainty via the diversity of the set of plausible and coherent segmentations, rather than

a pixel-wise map of uncertainties. This type of method is often seen in the context of medi-

cal imaging, where experts frequently disagree on the location of object boundaries, and this

disagreement is a key aspect of ensuring good clinical decisions and outcomes.

The key difference between this setting and the previous is that these methods are re-

quired to model the joint probability of class assignment over all pixels. This is in contrast

to standard cross-entropy training and learned loss attenuation, where the pixels are often

modelled independently, therefore sampling from high uncertainty regions leads to high-

frequency noise rather than diverse coherent segmentations.

When segmentation networks are trained with this method on a large labelled dataset,

the resulting variability at test-time will likely be due to the inherent ambiguity in the input

image, rather than ambiguity due to an insufficient dataset. Therefore in this setting, we can

treat the segmentation variability as a measure of aleatoric uncertainty.

This distribution of plausible segmentations can be achieved by either (1) defining a dis-

tribution in latent space, from which samples are decoded into segmentations, as in [82]–

[84], or (2) explicitly modelling the joint distribution at the output of the neural network, as

in [85].

In [82], the Probabilistic U-Net is proposed, which combines a conditional Variational

Autoencoder (VAE) [86] with a U-Net segmentation network [87]. It is trained such that,

during inference, a plausible segmentation is sampled by: (1) using the prior network to

parameterise an F1-dimensional Gaussian conditioned on the input image (2) extracting fea-

tures RF2⇥h⇥w from the image with the segmentation network (3) sampling a RF1 vector from

F1-dim Gaussian, tiling it to the spatial dimensions of the U-Net features, and then concate-

nating the sample and the U-Net features R(F1+F2)⇥h⇥w (4) decoding this concatenated vector

47

into a segmentation map. This work was improved in [83] by folding the prior network into

the segmentation network, and having a hierarchy of latent distributions in the decoding

stages of the U-Net.

They evaluated the model by injecting ambiguity into the Cityscapes dataset, by ran-

domly flipping class labels with a certain probability e.g. sidewalk is flipped to sidewalk-2

with a probability of 8/17. The samples from the learned distribution were shown to reflect

this ambiguity, as the frequency of class assignment across samples reflected the class flip

probabilities.

Another approach that aims to learn a distribution of plausible segmentations is [85].

Instead of using latent distributions, this work seeks to train a network to parameterise

a Gaussian distribution; but in contrast to the learned loss attenuation methods, this dis-

tribution should model the joint distribution over pixels and classes, l ⇠ N (µ, ⌃), where

µ 2 RHW⇥K and ⌃ 2 R(HW⇥K)2 and ⌃ is non-diagonal. The enormity of this required distri-

bution makes it intractable to use, so they instead use a low-rank parameterisation of the ⌃.

Much like [71], they do use Monte Carlo sampling through the softmax function instead of

an analytical solution.

3.4.4 Test-Time Augmentation

In Section 3.4.1 and Section 3.4.2, neural networks were trained to tell us at test-time the like-

lihood of a pixel being correctly segmented based on its appearance. The neural networks

learned this by observing when error occurs, and learning to relate appearance and error.

In contrast, another method trains a segmentation network normally, and only investi-

gates the relationship between appearance and error at test-time. It does this with image

augmentation, which changes the appearance of an image but leaves the underlying seman-

tic content unchanged. From the distribution of possible image augmentations it is possible

to obtain a distribution of possible segmentations, where, the more variable the segmenta-

tion of a given pixel, the more likely the pixel is to be segmented incorrectly. As before, if

a segmentation network is trained with a training dataset that captures the test distribution

well, then inconsistent segmentation is likely due to an inherent lack of information in the

image from which to infer where segmentation boundaries are located.

48

This approach essentially applies perturbations to the input data in order to measure

how the model output varies, in contrast to epistemic approaches which apply perturbations

to the model parameters instead. This is reflective of the difference in the nature of aleatoric

and epistemic uncertainty.

For the task of segmenting 2D and 3D MRI scans, [88] applies flipping, rotating, scaling

and random intensity noise as augmentations to a given input scan, yielding 20 perturbed

samples. They measure uncertainty from this distribution of segmentations by using the

predictive entropy, and show that, for their task, this test-time augmentation outperformed

Monte Carlo Dropout in terms of quality of uncertainty estimation.

The work in [89] uses a similar approach for the task of detecting Diabetic Retinopathy in

high-resolution images of the retina. It applies both the spatial transforms of the previous,

but due to using RGB images, it also uses colour-space transforms such as randomly chang-

ing the hue. Instead of 20 samples, this method samples 128 augmentations, and measures

uncertainty as the median max class assignment probability.

3.4.5 Discussion

Aleatoric uncertainty estimation methods use training and test data that is entirely in-distribution.

This means that when error or segmentation variability is found, it is inferred that this is

due to the data’s inherent ambiguity, rather than distributional shift, poor model architec-

ture choices, poor model optimization, or any other reason. However, suppose that we used

a dataset containing OoD data. In this case, when error or segmentation variability is mea-

sured, we might instead attribute it to distributional uncertainty, as discussed in Section 3.2.

This means that while the specific experiments in the cited works are not entirely relevant,

many of the methods can still be broadly of interest to us if used with OoD data.

Both learned loss attenuation and direct error estimation methods are of interest, as they

allow a model to output uncertainty estimates in a single forward pass. This means that

memory usage and latency are not meaningfully increased from a standard segmentation

network, which is a very desirable characteristic in the context of mobile robotics. The down-

side to many of these methods is that they require ground-truth in order to determine where

error occurs. If the training dataset contains in-distribution and OoD instances within the

49

same dataset, these methods would require pixel-wise annotation, which is costly in terms

of resources.

The cited works using deep generative modelling for aleatoric uncertainty use a labelled

training dataset, which contains various possible segmentations of the same image. This

is largely because they were from the field of medical imaging and used the lung image

database consortium (LIDC) dataset [90], which contains lung scans, each with four annota-

tions from expert clinicians. The curation of this type of dataset is very resource intensive,

and likely not feasible for a large scale OoD dataset, as discussed in Chapter 4.

One solution to the problem of a lack of pixel-wise annotations is to use test-time aug-

mentation, which does not involve uncertainty-specific training, i.e. the segmentation net-

work just needs to be trained in a standard manner. This means that error can be discovered

without the use of any labels. Therefore, a segmentation network could be trained on a la-

belled dataset from one domain, and then error due to distributional shift could be estimated

by this method at test-time on test data from a different domain. The downside to test-time

augmentation is that there is a significant computational cost at test-time, as a given test

image needs to be augmented and then segmented many times. A possible solution to this

is to use augmentation during training and to distill the distribution of segmentations into

a single model, similar to methods that do the same for ensembles or MCD.

3.5 Out-of-Distribution Detection

OoD detection is the task of identifying data points that do not belong to a given data dis-

tribution. While the focus of uncertainty estimation is to identify which of the model’s at-

tempts to solve a task are incorrect (and sometimes this is due to a distributional shift), by

contrast, the focus of OoD detection is to identify instances of distributional shift (and often

this leads to error for the task model). There is, however, clearly a significant amount of

overlap between the two, and a given OoD detection method’s estimated ‘OoD-ness’ score

can immediately be interpreted as an estimate of distributional uncertainty.

There are many different ways to approach this problem, and we will discuss each in the

following sub-sections.

50

3.5.1 Pretrained Methods

One set of methods for OoD detection constrains itself to the use of a frozen pre-trained

network, where different inference methods are designed to leverage the learned represen-

tation and to produce a OoD score. In this setting, training data is used to train a neural

network for classification or segmentation, and the training data distribution is defined as

in-distribution. OoD instances are then detected by using the model’s learned features, log-

its or categorical distributions to compare how similar a given test image is to the training

images.

A common baseline, [91], calculates the max softmax score, pmax, where the temperature

parameter in the softmax function is typically tuned with validation data. [92] improve on

this method by adversarially perturbing the input test images, as this empirically resulted in

greater separation between the in-distribution and OoD examples. [93] calculates the OoD

score based on the Mahalanobis distance between the embeddings of the test image and the

labelled training dataset, and does this in a series of feature spaces throughout the network.

In [94], a distinction is made between methods that use features and methods that use

logits or max softmax scores. They argue that logits and pmax contain only class-dependent

information, i.e. they only consider the similarity of a given test image to each of the in-

distribution classes. By contrast, feature-based methods contain more class-agnostic infor-

mation.

An experiment in [94] uses the iNaturalist dataset [95] as a OoD dataset (as in [96])

with ImageNet-1k [97] defining in-distribution, where iNaturalist in this setting contains 110

plant classes that are not contained in ImageNet-1k. In this instance, feature-based methods

struggle more as they focus less on the class-specific detail that differentiates between the

plants in ImageNet and the OoD plants. The class-dependent information in the logits and

pmax methods contain more on the required level of specificity, and therefore OoD detection

performance was better, as the model could not decide which of the ImageNet classes to

assign the iNaturalist image to.

Then, [94] uses the Describable Textures Dataset [98] as OoD, which contains a diverse

set of images that define textures, rather than describe semantic objects. On this dataset they

showed that the methods using class-dependent information performed poorly compared

51

to the feature-based, class-agnostic methods. This shows that features are generally better

at describing broader, less semantically driven differences between images. They finally

developed a method using logits and features to reap the benefits of both.

An alternative method, presented in [99], applies density estimation to a feature space

in order to assess whether a given test feature is in-distribution or OoD. For features z and

classes y, the method calculates p(y) and then models p(z|y) with a Gaussian Mixture Model,

before calculating the OoD scores as � log(p(z)), where p(z) =
R

p(z|y)p(y)dy. This work

notes that it would be preferable to train the network, such that its representation contained

‘task-agnostic’ information as well as task-specific information. However, it constrains itself

to only developing an inference procedure for OoD detection for a given model.

This therefore suggests that, in addition to the logits and pmax, the features from pre-

trained networks may also be largely class- or task-specific, as they are trained to extract

information that is salient to the task. This means that these approaches are likely to fail

when there is not sufficient information in the training dataset for the model to learn to

appropriately describe OoD instances in the features, logits or pmax.

3.5.2 Regularisation-Based Methods

Methods in this sub-section build on those in Section 3.5.1, by adding a loss that regu-

larises neural network training on labelled data. The objective of this is to embed more

task-agnostic information into the network, in order to improve OoD detection.

Deterministic Uncertainty Methods

These methods add regularisation to model training by using spectral normalisation [100].

Spectral normalisation layers constrain the Lipschitz constant of a network, where the Lips-

chitz constant, M , of a function is a value that satisfies:

dA(f(x1), f(x2)) MdB(x1, x2)

where dA, dB are metrics on the sets A and B respectively, for a function f : A! B. The Lips-

chitz constant is therefore a measure of the extent to which a function amplifies or attenuates

52

the distance between points x1, x2 in their different metric spaces.

The goal of training in this way is to yield a model with a learned representation in

which distance between features z1 = f(x1) and z2 = f(x2) is a measure of the semantic

difference between pixels x1 and x2. If this is true, then we would expect an OoD pixel to be

embedded very far away from in-distribution pixels, while in-distribution pixels would be

close to other in-distribution pixels of the same class. This therefore allows OoD detection

to be performed by comparing the distance between the embedded in-distribution dataset

and a given pixel feature from a test image.

Each Deterministic Uncertainty Method (DUM) is trained similarly by using spectral nor-

malisation to perform this regularisation, but each performs inference in a different manner.

[101] replaces the output layer of a classification network with a Gaussian Process. [102]

measures the similarity between features using Radial Basis Function (RBF) kernels. [103]

instead shows that these more complex approaches are not strictly necessary, and that a

simpler post-hoc per-class Gaussian Mixture Model achieves similar OoD performance.

Other Regularisation-Based Methods

[104] presents Deep Variational Information Bottleneck, which adds the Gaussian prior loss

from VAE [86] training to the latent space in a classifier in order to add regularisation to

model training and prevent adversarial attacks. In [105], the authors then showed that using

this method improves OoD detection, when the OoD score is taken as the pmax. This shows

that this alternative type of regularisation is also effective at improving the representation

by encoding task-agnostic information.

3.5.3 Self-Supervised Learning for OoD Detection

In Section 3.5.2, spectral norm was used to ensure that feature space distance is semantically

meaningful. This is also the objective of many SSL methods, and so these methods can also

used for OoD detection.

SSL methods for computer vision train neural networks to learn a representation from

image data without the use of any annotations. Thanks to the lack of labelling requirement,

SSL methods are typically paired with large and diverse datasets, such as ImageNet [97].

53

Therefore, for these works, a ‘good’ representation is one which can be used to solve a wide

range of computer vision problems, e.g. classification, semantic segmentation, depth esti-

mation and object detection.

One way in which this can be achieved is by using data augmentation along with either

an instance classification or a clustering task. Data augmentation allows us to change the

appearance of an image, whilst keeping its semantics the same. Instance classification tasks

then pose network training as a nearest neighbour classification problem, where a pair of

augmented images defines its own class or ‘instance’, as seen in [32], [106], [107]. Clustering

tasks instead train a network to assign an image and its augmentation to the same cluster,

such as in [108].

Another set of methods instead corrupt a single image, and then train a network to re-

cover the information content of the image from this corrupted input. Examples of this

include re-colourisation tasks [109], patch reordering [110], [111] or, most prevalent at the

moment, masking tasks [31], [112], [113].

Empirically, it has been shown that many of these methods can extract rich semantic in-

formation from a diverse set of images, for example by exhibiting good nearest-neighbour

classification performance on ImageNet, or high quality semantic segmentation on ADE-

20k [114] or Cityscapes [25] by training only a linear layer on top of the learned represen-

tation. Therefore, for the task of OoD detection, this learned representation can be used to

detect the differences between in-distribution and OoD instances, as suggested in [115].

A related work is [116] which uses the instance classification framework in [32]. How-

ever, the difference is that they do not use a large-scale dataset, but instead solve instance

classification as well as the classification task on only the task-specific in-distribution dataset.

The objective here is to learn ‘task-agnostic’ features with the instance classification loss, in

addition to the ‘task-specific’ using the cross-entropy task loss, with these ideas discussed

previously in Section 3.5.1.

3.5.4 Proxy Task Methods

An alternative approach is to design a task which requires a semantic understanding of an

image to solve, such that a model can successfully solve it for the in-distribution data used

54

for training, but struggle on OoD data. One such method [117] samples a transform from a

set of pre-defined geometric transforms (rotations, horizontal flips, large translations with

mirroring), and uses this to augment each training image. The task is then framed as a clas-

sification problem, where the model must estimate which of the pre-defined transforms was

applied to the original image. The OoD score is then computed as pmax for a given test image,

i.e. it is predicted that the model will not be able to confidently determine which transform

was applied to the OoD image, due to a lack of recognition of high-level features such as

objects or object parts and no knowledge of how they are usually spatially distributed.

[115] uses a similar approach and defines purely rotational augmentations from the set of

rotation angles: {0�, 90�, 180�, 270�}. The difference is that this work does this in combination

with the standard supervised classification training, and uses the classification pmax as the

OoD score. The argument here is that this self-supervised rotation task forces the model

to learn to extract features that describe more than just texture, but also detect high-level

attributes such object parts. Then, by having a ‘higher-quality’ representation of the in-

distribution data, the classification model is better equipped to detect when an image does

not come from this distribution.

3.5.5 Deep Generative Models

Deep generative models seek to learn a high-dimensional representation of the data distribu-

tion for the training images, from which additional samples from the same underlying dis-

tribution can be sampled. Examples of such techniques include VAEs [86], Generative Ad-

versarial Networks (GANs) [118], auto-regressive models [119], Flow-based models [120],

[121], and diffusion models [122]–[124]. Each of these methods provide a way of doing OoD

detection as we can query how well a given test image aligns with the learned represen-

tation of the in-distribution data. The method for measuring this ‘alignment’ is typically

dependent on which type of generative model is being used.

VAEs, auto-regressive models such as PixelCNN, and Normalising Flows provide a way

to evaluate the likelihood of any given test image, and the effectiveness of this for OoD

detection was investigated in [125]. The conclusion from this work, is that we have to be

careful when doing this, as likelihood appeared to be a poor measure of distributional shift.

55

Methods such as [126], [127] use reconstruction-based scores instead for a VAE and GAN

respectively, and showed this to be an effective method for OoD detection. In a way, this is

similar to the literature on using proxy tasks for OoD detection presented in Section 3.5.4, as

the generative models are trained by performing reconstruction tasks, and the measure of

‘OoD-ness’ is how well they can perform this task on a test image.

3.5.6 Use of Out-of-Distribution Data

Each of the previously described OoD detection and uncertainty estimation methods train

neural networks using in-distribution data only. They learn a representation from this in-

distribution data, and are tasked with detecting differences between the training data and

test images. In contrast, the methods described in this section use an OoD training dataset

in conjunction with the in-distribution training data.

In principle, these OoD datasets are curated such that each image is OoD, which is mostly

achieved by ensuring that the set of classes defined in the OoD dataset is disjoint from the

set of classes in the in-distribution dataset. A loss function is then defined which trains the

model to learn a separable representation of in-distribution and OoD data.

[128] introduces the common framework for doing this, naming it Outlier Exposure. If

the in-distribution dataset Din defines a distribution pin and the OoD dataset defines a distri-

bution pout, then the outlier exposure objective can be defined as:

L
OE = Epin [H(y⇤

, p(y|x))] + Epout [L
OoD(p(y|x))] (3.15)

Where L
OoD(p(y|x)) = H[Uniform{0, K� 1}, p(y|x)] is chosen for classification problems,

where Uniform{a, b} is the discrete uniform distribution. The first term maximises the sharp-

ness of p(y|x) at the correct class for in-distribution data, while the second term maximises

the uniformity of p(y|x) for OoD data. Another common choice for L
OoD is L

OoD(p(y|x)) =

KL[Uniform{0, K� 1} k p(y|x)], e.g. [129]. [51], [130] use the same idea, but instead formu-

late the objective for a Dirichlet-distributed output.

The OoD dataset in these works often derive from a dataset collected for a different task,

e.g. a dataset for the classification of a different set of semantic classes. This means that

there is a large distributional shift between the in-distribution and OoD dataset. It has been

56

noted in [128], [129], that the larger this distributional shift, the less well these OoD detec-

tion methods work. This is likely because the task of learning a separable representation of

two very different sets of data can be fairly trivial, and thus the model can easily overfit to

the training datasets. For a more robust separation, the obtainment of near-distribution or

boundary training examples is therefore important, with the hope that the resultant learned

representation is significantly more general. These are training images which are OoD

enough to cause model error, without appearing so visually distinct from in-distribution

images that they are trivially detected. [129] generates such a near-distribution dataset us-

ing a GAN, which is trained to generate images for which the classifier is unconfident (i.e.

KL[Uniform{0, K� 1} k p(y|x)] is large) while also fooling the discriminator into thinking

the images are in-distribution. If these losses are balanced, [129] shows that the images are

both realistic looking, while also OoD, albeit it on small-scale datasets.

3.5.7 Discussion

It is interesting to compare the literature involving the use of an OoD dataset for OoD de-

tection (which we will call outlier exposure for convenience) to the idea of using learned

loss attenuation methods with OoD data. In both cases, they train a neural network to learn

to detect the differences between in-distribution and OoD data such that they can represent

the difference at the network output and reduce the loss. While outlier exposure requires

a dataset which explicitly describes the desired separation between certain and uncertain,

learned loss attenuation methods measures the error, and thus the desired separation be-

tween certain and uncertain is defined as a function of the model. This means that the latter

provides noisier supervision as the model’s parameterisation changes throughout training,

however it also allows for a more flexible definition of the problem, i.e. it does not force you

to label which data points should be certain or uncertain.

The lack of flexibility in the problem definition allows for the outlier exposure problem

to use the simple formulation of a softmax distribution. By contrast, the additional defini-

tional flexibility typically forces learned loss attenuation problems to use a more complex

objective to account for the lack of direct supervision. Note that this is not true for direct er-

ror estimation for aleatoric uncertainty estimation, but this is a relatively small subset of the

57

literature, and is perhaps not widely practised due to the simpler objective’s sub-optimality

when the noise in supervision (i.e. the label noise) is high.

Deep generative models come with the potential that they can simultaneously learn a

rich representation from a large dataset due to a lack of labelling requirement, while also be-

ing performant for specific discriminative tasks. The former allows for higher quality OoD

detection as larger, more diverse datasets allow neural networks to extract more salient in-

formation from images leading to the accentuation of the important differences between in-

distribution and OoD images. The problem with this is that, as discussed in [131], generative

models are not able to match the discriminative performance of discriminative models. For

this reason, a deep generative model would need to be used in parallel to the segmentation

network, which is not efficient from the point of view of computational requirements.

The proxy task methods are predicated on the idea that data augmentation can be used

to distinguish between in-distribution and OoD instances, much like for test-time augmen-

tation methods for aleatoric uncertainty estimation. While both assume that the model is

more invariant to the perturbations to in-distribution data than for OoD data, the cited OoD

detection methods use proxy task training to further increase the separation between the

two. As stated in Section 3.4.5, using augmentation is a useful way of determining erro-

neous image regions without the need for ground-truth labelling. The literature using these

augmentation-based tasks adds evidence that this could work well for OoD data in the same

way that it does with in-distribution data for aleatoric uncertainty estimation.

The final point of interest from this section is from [115], which gives empirical evidence

to the idea that improving the representation with self-supervised learning benefits OoD

detection.

3.6 Conclusion

In this chapter, we have introduced the concepts of epistemic and aleatoric uncertainty, and

situated distributional uncertainty within this framework. We argue that distributional un-

certainty can just as easily be viewed as aleatoric uncertainty, as it can epistemic uncertainty.

For this reason, both sets of methods are open to investigation, and the key determinant

is really the practicality of each method and empirical performance. In terms of practical-

58

ity, the promising uncertainty estimation methods include: (1) distilling epistemic methods

into a single model, (2) aleatoric learned loss attenuation methods applied to OoD data (3)

distillation of test-time augmentation based methods, also applied to OoD data.

We have also discussed OoD detection methods, and find that many of these methods

have similarities to aleatoric uncertainty estimation methods. This gives evidence that meth-

ods such as a combination of learned loss attenuation and outlier exposure methods or OoD

proxy task methods and test-time augmentation may well be very well suited to the problem

of computationally-light distributional uncertainty estimation.

In the next chapter, we discuss how this thesis measures the quality of a model’s uncer-

tainty estimates and the datasets used to do this. This is followed by the presentation of

our proposed methods in Chapter 5, Chapter 6 and Chapter 7, which are motivated by the

discussions in this chapter.

59

Chapter 4

Model Evaluation and Datasets

Contents

4.1 Model Evaluation & Metrics . 61

4.1.1 Misclassification Detection . 62

4.1.2 Metrics: Definitions . 62

4.1.3 Metrics: Discussion . 65

4.2 SAX Semantic Segmentation Dataset . 67

4.2.1 Dataset Motivation . 68

4.2.2 Semantic Definitions . 69

4.2.3 Inclusion of multiple target domains 70

4.2.4 Curation of the unlabelled SAX training datasets 71

4.3 Other Driving Datasets . 72

4.3.1 Cityscapes . 72

4.3.2 Berkeley DeepDrive . 72

4.3.3 WildDash . 73

4.3.4 KITTI . 73

This chapter describes the method for evaluating the quality of a segmentation model’s

uncertainty estimation and the data used to train and test the models.

Section 4.1 introduces the method for evaluation: misclassification detection, where un-

certainty estimates are expected to directly detect erroneous pixels. The metrics used to

60

evaluate a model’s ability to perform misclassification detection are discussed in detail in

this section, with reference to the robotics context of this thesis.

Then, in Section 4.2, the SAX Semantic Segmentation Dataset is introduced, which was

collected, curated and then annotated over the course of this thesis to serve as a benchmark

for distributional uncertainty estimation. Lastly, in Section 4.3, the other driving datasets

used to train and test models are described, such that we can qualitatively understand the

distributional shift between them.

4.1 Model Evaluation & Metrics

In this thesis, we are interested in evaluating how a model can perform misclassification de-

tection alongside semantic segmentation on distributionally-shifted data. This means that

the uncertainty estimate values are directly interpreted as the model’s estimate of the likeli-

hood that a given pixel is accurate or inaccurate.

This is in contrast to other possible methods for evaluation such as considering model

calibration or OoD detection performance, seen in [43], [44] and [128] respectively. As de-

scribed in Section 2.3, model calibration evaluates how a model’s confidence correlates with

accuracy in a frequentist manner, i.e. for a batch of N pixels each with similar confidences,

it compares the mean confidence to the mean accuracy. These summary statistics are useful

for getting a general sense of the quality of a model’s uncertainty estimation, but we sug-

gest that they are not suitable for a robotics setting. This is because for a robotic system,

every captured image leads to an updated understanding of an environment, and this un-

derstanding directly conditions the system’s behaviour at a given moment. Therefore, we

need to consider the direct relationship between image and error, as errors can immediately

lead to dangerous robot behaviour.

OoD detection performance is typically measured by evaluating how the OoD scores

are predictive of whether a given image or pixel is in-distribution or OoD, as introduced

in Section 3.5. This is similar to misclassification detection, however in OoD detection,

in-distribution and OoD are being conflated with accurate and inaccurate respectively. In

our setting, the safety of the system is more closely related to whether image regions are

inaccurate or not, than whether they are OoD or not.

61

4.1.1 Misclassification Detection

Misclassification detection is a binary classification problem whereby the uncertainty esti-

mates ‘classify’ each pixel as either certain or uncertain and this is compared to whether the

pixel was segmented accurately, giving the label states accurate and inaccurate – as can also

be found in [91]. Clearly, the ideal model estimates uncertainty such that each pixel is ei-

ther (certain, accurate) or (uncertain, inaccurate). Here is a confusion matrix that defines the

possible states:

Predicted

[certain]
t

[uncertain]
t

A
ct

u
al accurate [TP]

t
[FN]

t

inaccurate [FP]
t

[TN]
t

We define the accurate and inaccurate label states as positive and negative respectively.

Each of the states: TP, TN, FP, FN, are calculated for a specific threshold t on a model’s

real-valued uncertainty estimates, as illustrated by [.]t. Therefore which pixels are certain

and uncertain is also determined by the threshold t. From now on, this notation is omitted

for: TP, TN, FP, FN, in the interest of brevity.

The best model can be chosen from a set of imperfect models by a wide range of metrics,

owing to the fact that this is ultimately a binary classification problem. Ultimately, the best

metric to use for evaluating uncertainty estimation is dependent on the context in which the

model is being deployed. We therefore consider a range of possible metrics and justify the

use of each in the context of robotics.

4.1.2 Metrics: Definitions

ROC Curves

A common way to evaluate binary classification algorithms is to use Receiver Operating

Characteristic (ROC) and Precision-Recall (PR) curves, and this also extends to misclassi-

fication detection, as seen in [91]. ROC curves plot two quantities: the True Positive Rate

62

(TPR) versus the False Positive Rate (FPR):

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

The TPR represents the proportion of accurate pixels that are estimated to be certain,

while the FPR is the proportion of inaccurate pixels that are erroneously estimated to be

certain. These quantities are calculated separately for the accurate and inaccurate pixels,

i.e. the pixels that belong to the positive and negative class respectively. They are thus

independent of the class distribution, and so are not affected by the semantic segmentation

accuracy. In order to calculate a single quantity, TPR and FPR are calculated for a range of

thresholds, and then the area under this curve is calculated, known as the AUROC. This is

maximised for the ideal model, where AUROC⇤ = 1.

PR Curves

PR curves are generated by plotting Precision versus Recall, where each are calculated as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

These curves are often used in context of information retrieval, where the task is to retrieve

the positive class instances, while retrieving as few of the negative class instances as possi-

ble. Using this interpretation for misclassification detection, PR curves measure how effec-

tive a model’s uncertainty estimates are at finding only the accurate pixels, while ignoring

the inaccurate pixels (see above that accurate is defined as the positive class, not inaccurate).

Similarly, these curves can be summarised by calculating the area under them, giving the

AUPR. Again, the ideal model also maximises this metric, with AUPR⇤ = 1.

F� Scores

Another method for aggregating PR curves is to calculate the F� score:

F� =
(1 + �

2)TP

(1 + �2)TP + FP + �2FN

63

The benefit of this metric is that it includes a hyperparameter � that can be used to weigh the

importance of precision and recall for any given application. When � < 1, greater impor-

tance is given to Precision, while for � > 1, greater importance is given to Recall1. Typically,

the values used for � are 1
2 , 1 and 2, giving the F1/2, F1 and F2 scores.

Misclassification Detection Accuracy

Given our binary classification problem of misclassification detection, we can also simply

consider the accuracy of the model on this problem, given the name AMD (not to be confused

with the semantic segmentation accuracy), and is calculated as follows:

AMD =
TP + TN

TP + TN + FP + FN

Under this metric, an ideal model is one which assigns the greatest number of pixels to

one of two ‘safe’ states: (accurate, certain) and (inaccurate, uncertain).

Single-threshold versus All-threshold metrics

The possible states (TP, TN, FP, FN) are all calculated for a single value of the uncertainty

threshold. However, when we calculate ROC and PR curves and take the area under these

curves, we are summarising the performance over all thresholds.

It is however also useful to calculate metrics for single values of the threshold, i.e. to

evaluate the effectiveness of a method at a single point on the curve. For this type of analysis,

we consider the threshold that maximises F� and AMD scores, known as MaxF� and MaxAMD

scores.

An additional consideration is needed for this analysis, however, as it is possible that a

model with very low segmentation accuracy on a challenging target domain might end up

with a very good MaxF� or MaxAMD by expressing uncertainty over all pixels. It might be

the case that this model looks better in terms of these metrics than a model that segments

the target domain better, but still largely rejects each pixel as uncertain.

For this reason, we pair the MaxF� and MaxAMD scores with the p(a, c), which is the
1Note that as � ! 0, F� ! Precision, and as � !1, F� ! Recall

64

proportion of pixels that are accurate and certain:

p(a, c) =
TP

TP + TN + FP + FN

In this way, we can also see if the model is actually solving the semantic segmentation

task, as well as being able to detect distributional shift. We present MaxF� @ p(a, c) and

MaxAMD @ p(a, c) .

4.1.3 Metrics: Discussion

In this thesis, we are primarily interested in situating these evaluations in the context of se-

mantic segmentation for real-world mobile robotics applications. Therefore, it is important

that we consider the following:

1. What are the misclassification costs for pixels that are FP versus FN in real-world

safety-critical settings?

2. Should the metrics we use to select the best model be independent of the class distri-

bution? By class distribution, we mean the proportion of pixels that are accurate, a.k.a.

p(accurate), which is the same as the semantic segmentation accuracy.

Naturally, the answers to these questions are context-dependent, both in terms of the

nature of the robot deployment, and also how the semantic segmentation maps are used for

robotic planning and control. However, we can still make some general statements.

For the first question, we can say there is a higher importance of certain pixels being

accurate, than uncertain pixels being inaccurate. Therefore, there should be a higher misclas-

sification cost to FP pixels than FN. Put simply, dangerous situations involving robots are

often arise when perception systems have an over-confident and inaccurate understanding

their surroundings.

In contrast, broadly speaking, perception systems that are under-confident are typically

overly-conservative in their estimation of what is a safe action. This leads to systems that

are possibly inefficient, but are less dangerous.

For these reasons, we argue that precision is more important than recall for misclassifi-

cation detection tasks, where we are trying to evaluate the quality and usefulness of uncer-

65

tainty estimation for robotics. This means that we ideally want no FP pixels, even if that

means we have fewer TP pixels.

In order to encode this preference into our model evaluation, we use the F� scores. More

specifically, we use the F1/2 score to represent our greater interest in precision over recall.

What about the other metrics?

PR and ROC curves show us the misclassification performance over the full range of thresh-

olds and the full range of misclassification costs. For this reason, the summary metrics

AUROC and AUPR aggregate the performance over all misclassification costs. This is an

important consideration as it is therefore possible to choose a model based on these met-

rics that might be sub-optimal for a specific context (with its specific weighting of different

misclassification costs). Nonetheless, they are useful metrics for giving a broad sense of the

quality of uncertainty estimation.

Misclassification detection accuracy, AMD, similarly expresses no preference between FP

and FN. In contrast to the aforementioned curves, we consider the threshold at which AMD

is maximised, i.e. MaxAMD, as opposed to aggregating the performance over all thresholds.

This gives a different perspective on quality of uncertainty estimation, and is useful when

we do not care about the relative misclassification costs. An example of when this might

occur is when the semantic segmentations are being used for localisation or mapping. In the

former of these cases, further post-processing steps such as RANSAC are being used, which

can reject FP pixel themselves. Similarly, in the latter case, majority voting can reduce the

segmentation noise, turning possible FP pixels into TP.

We make the case that, in these applications, choosing the model that has the highest

MaxAMD is more appropriate. An important note, is that typically the values of p(a, c) at

which we have MaxAMD are typically higher than that of MaxF1/2, which is likely to be useful

in these applications, without compromising our wider trust of the system, as can been seen

in Section 5.4, Section 6.9 and Section 6.10.

66

Discussion: Class Distribution

It is an often cited benefit that PR and ROC curves are independent of the class distribution

of the test data. This means that in a binary classification problem, metrics based on these

curves are independent of the underlying proportions of how many data points belong to

each of the positive and negative classes.

Take the problem of disease detection for example. In this case, the class distribution is

represented by: p(disease) and p(healthy) in the population of patients. We do not want the

metrics to evaluate the best method to be conditioned on the rate of disease for one given

dataset, as then the method would be sub-optimal for another dataset. For this reason, is

important that the metrics are independent of p(disease) and p(healthy).

Our misclassification detection problem is a little different, as the class distribution is

represented by: p(accurate) and p(inaccurate). Although it is clearly true that we want to

pick the model with the best uncertainty estimation, we cannot choose it while ignoring

that we also need a model that can return pixels that are accurately segmented. Therefore,

the metrics we use must also allow us to pick model that produces high-quality semantic

segmentations, relating to having a high p(accurate). AUROC and AUPR obfuscate this

information, which leads us to also considering MaxF1/2 @ p(a, c) and MaxAMD @ p(a, c).

MaxF1/2 and MaxAMD allow us to consider the quality of uncertainty estimation for two

sets of misclassification costs, while p(a, c) informs us of how many pixels are actually as-

signed to the known classes as opposed to assigned to unknown. The former represents

how safe the model is, while the latter tells how useful the model is.

In addition to giving values for MaxF1/2 @ p(a, c) and MaxAMD @ p(a, c) in tables, we also

plot the full range of F1/2 and AMD versus p(a, c).

4.2 SAX Semantic Segmentation Dataset

As part of the Sense-Assess-eXplain (SAX) project [132], a semantic segmentation dataset

was created, known as the SAX Semantic Segmentation Dataset. The purpose of the SAX

project was to develop methods along three themes: (1) the robust perception of environ-

ments, (2) the self-assessment of model performance for a given task and, (3) the explanation

67

of performance to a human user. The work conducted in this thesis focusses strongly on the

first two of these themes.

In order to evaluate how methods satisfy each of the three themes, this project involved

collecting large amounts of driving data in unusual and challenging environments, and to

produce datasets with ground truth that can be used for model evaluation.

My contributions to this dataset were as follows: (1) The overall design of the dataset

- how the broader dataset is split into training and test datasets, which domains to include

data from, and specifically which images to use, (2) A significant proportion of the pixel-wise

labelling, which was done by hand using an internal tool of the Oxford Robotics Institute.

4.2.1 Dataset Motivation

In the interest of investigating how semantic segmentation quality degrades due to distribu-

tional shift, and how methods can detect this, a pixel-wise labelled segmentation dataset has

been created from some of this collected data. The dataset is split up by geographic domain,

so that we can compare metrics between each of the domains.

Due to the significant amount of time and effort required to label each image in a pixel-

wise manner, it was only feasible to label a set of images in the order of hundreds, and these

labelled images are therefore used as a test dataset. Segmentation networks can therefore

be trained on a labelled dataset from one domain, and then tested on the challenging SAX

domains to determine (1) the extent to which the performance degrades and (2) the extent

to which this can be mitigated via uncertainty estimation.

In addition to the labelled test datasets, the SAX Semantic Segmentation Dataset also

includes a large unlabelled dataset for each domain. This is motivated by the literature and

discussion in Chapter 3, where the idea of training with unlabelled OoD images is raised.

This can be investigated with the 100,000 unlabelled images included for each domain.

The successive sub-sections discuss the characteristics of the dataset, and how they allow

us to evaluate segmentation and uncertainty estimation quality for a range of novel methods

for training segmentation networks.

68

4.2.2 Semantic Definitions

As described above, the desired use for this dataset is in conjunction with a pixel-wise la-

belled training dataset from another domain. We are interested in evaluating how the model

extends the visual semantic concepts defined in the labelled training dataset to the distri-

butionally shifted images in the test dataset. Therefore, across both the training and test

datasets, we want the pixels to be annotated with the same semantic classes.

For this reason, the test dataset was annotated in accordance with the labelling policy

used in the Cityscapes dataset [25]. This is because this labelling policy is a commonly used

standard for driving data, allowing interoperability with other datasets as well, such as with

BerkelyDeepDrive [63], KITTI [133] and WildDash [134].

In addition to how the images are labelled, it is also important to determine which im-

ages should be labelled from the large pool of collected images to make an informative test

dataset.

One possible objective for segmentation datasets is that training and test datasets are pre-

pared such that all the information required to perfectly segment the test dataset is provided

in the training dataset, i.e. the uncertainty is purely epistemic, and can be fully reduced for

the test dataset. This means that weather and illumination conditions do not corrupt the

images and no instances of OoD classes are present, or, if there are, they are labelled void

and ignored during training and testing. This is a useful setting for the evaluation of seg-

mentation network architectures, however is not reflective of deploying robot systems into

the real world.

By contrast, for the SAX test datasets, a conscious effort was made to include objects that

do not belong to any of the defined semantic classes. This is in addition to objects that belong

to the known classes, but look very different, which are very prevalent when the geographic

domain significantly changes. Another possible source of distributional uncertainty for the

SAX datasets is the sensor type, for which a PointGrey Bumblebee XB3 stereo camera was

used. By contrast, the Cityscapes dataset used a stereo camera with 1
3 -inch CMOS 2 MP sen-

sors, namely OnSemi AR0331s. Each of these factors ensure that there will be distributional

uncertainty for us to investigate in the test datasets.

69

4.2.3 Inclusion of multiple target domains

As discussed, this dataset is made up of sub-datasets, which are each collected in a given

geographic domain. Specifically, three geographic domains are considered: London, the

New Forest, and Scottish Highlands. These represent a spectrum of distributional shift from

an urban driving dataset, such as Cityscapes, with London being the most similar and the

Scottish Highlands being most different.

These datasets allow us to investigate how the quality of segmentation and uncertainty

estimation vary with the magnitude of the distributional shift. They also allow us to inves-

tigate how training with unlabelled data from each of these domains can help to mitigate

performance degradation on both of these fronts.

The rest of this sub-section describes each of the SAX domains in order to get a sense of

the nature of the distributional shift between these domains and other public datasets. For

examples from each domain see: Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4.

SAX London

This domain is most similar in appearance and spatial distribution of classes to other urban

driving datasets. The likely differences in the appearance of the defined semantic classes

from other urban driving datasets include: markings on the roads, different architecture of

buildings, different signage. There are also a number of objects of undefined class, such as

bus stops, dogs, and road works. The conditions for this dataset vary from dry and overcast,

to dark and lightly raining, with the latter likely causing a larger distributional shift than the

former.

SAX New Forest

The New Forest domain is less urban than the London domain, as the images were collected

in small towns and their surroundings in a rural region of Southern England2. A major

difference between the New Forest and other urban driving domains is the distribution of

classes, i.e. terrain and vegetation are much more frequent in the former, while buildings,

traffic lights, and pedestrians are much more frequent in the latter. Given the rural nature of
2https://www.thenewforest.co.uk/

70

https://www.thenewforest.co.uk/

this domain, the road boundaries are less clear, and it contains many instances of unknown

classes such as horses, cows and donkeys, which are allowed to roam freely3, and so are

commonly found in and besides the road.

SAX Scotland

Images for this domain were collected in and around the Ardverikie Estate4 in the Scottish

Highlands, and are the least similar to other urban driving datasets. This is because many

of the images were collected away from public roads and in very rural settings. This means

that the distribution of classes is different, as well as the classes themselves looking quite

different. A notable example of this is that the class road is often represented by dirt tracks

or gravel roads rather than paved streets. Another is that the terrain class in a dataset

such as Cityscapes refers to patches of grass, whereas in the Scottish Highlands the most

similar instances of terrain would instead be heather moorland5.

4.2.4 Curation of the unlabelled SAX training datasets

As mentioned, each SAX labelled test dataset has an accompanying unlabelled training

dataset. Each of these unlabelled datasets contain approximately 100,000 images. Given

a dataset of this size, careful curation of which images should and should not be included

would be extremely time-consuming. Therefore, the only curation performed was to remove

any images that are too close in time or location to the labelled test images.

The dataset was obtained by uniformly sampling at a frequency of 4 Hz from a pool of

videos collected by the data collection vehicle. Which videos are chosen was broadly guided

to get a range of different environments within a domain, and the number of videos was

chosen such that sampling in this manner yields 100,000 images.
3https://www.newforestnpa.gov.uk/discover/commoning/the-animals/
4https://ardverikie.com/
5https://en.wikipedia.org/wiki/Moorland

71

https://www.newforestnpa.gov.uk/discover/commoning/the-animals/
https://ardverikie.com/
https://en.wikipedia.org/wiki/Moorland

4.3 Other Driving Datasets

Additional datasets are used, which define source and target domains, where the source

domain provides labelled training images and the target domain is distributionally shifted

from the source domain, and provides labelled test images and (optionally) unlabelled train-

ing images.

4.3.1 Cityscapes

The Cityscapes dataset [25] contains 5000 pixel-wise labelled images, with a 60 % - 10 % -

30 % split between train-val-test. They are collected in 49 German cities and one Swiss city

in the daytime, in bright but not sunny conditions and during the spring, summer, and au-

tumn. The semantic class definitions used in Cityscapes are used in all of our experiments,

and are defined as follows (the colour denotes the visualisation colour seen in figures): Ex-

amples from this dataset can be seen in Figure 4.5.

• road

• sidewalk

• building

• wall

• fence

• pole

• traffic light

• traffic sign

• vegetation

• terrain

• sky

• person

• rider

• car

• truck

• bus

• train

• motorcycle

• bicycle

• void

4.3.2 Berkeley DeepDrive

Berkeley DeepDrive (BDD) [63] uses the same semantic definitions as Cityscapes, although

the classes are visually different due to collection in Berkeley, New York, San Francisco,

and the Bay Area. Additionally, images are collected in the day and night, and in rainy,

snowy, and foggy conditions, in addition to clear and overcast. This means that BDD is a

much more diverse dataset than Cityscapes. It is also larger, as it contains 10,000 pixel-wise

labelled images with a 70 % - 10 % - 20 % split for train-val-test. There is also a larger BDD

dataset, named BDD-100k, which contains 100,000 unlabelled images.

72

We use BDD in a variety of ways including: (1) as a target test domain, where only the test

split is used, and the labelled training dataset from another domain is used, (2) as a target

training and test domain in which the 100,000 unlabelled images are used for training, while

the labelled test split is used for testing, (3) as a source training domain, where the labelled

train split is used for training instead of Cityscapes. Examples from this dataset can be seen

in Figure 4.6.

4.3.3 WildDash

WildDash [134] is a dataset of 4256 pixel-wise labelled images that are collected from dash-

cams mounted on vehicles all around the world. In contrast to the other datasets, this dataset

is designed to be used only as a labelled test dataset. It is the most diverse of any of the

datasets considered as it contains rural and urban scenes from each continent, and in a vari-

ety of weather and illumination conditions. It is therefore a significant challenge to produce

both high-quality segmentations and uncertainty estimates, and is a useful benchmark in

assessing the generality of both. Examples from this dataset can be seen in Figure 4.6.

4.3.4 KITTI

KITTI [133] is collected in Karlsruhe, Germany and the semantic segmentation portion con-

tains 400 pixel-wise annotated images in a 50 % - 50 % train-test split. This is therefore not

a dataset with significant diversity, as it is a small dataset collected within urban and semi-

urban Karlsruhe. In addition to this dataset, there are also KITTI raw logs containing many

more unlabelled images, split into separate sequences for each sub-domain: City, Residen-

tial, Road, Campus, Person, Calibration.

We use KITTI domain data in the following ways: (1) it is used as a target test dataset

in which the train split is used, as the test labels are withheld for testing on their servers,

(2) the KITTI raw images are also used as an unlabelled target training dataset, with testing

occurring on the labelled train split as in (1). The raw images for this unlabelled dataset are

chosen such that the images are from the same sub-domains, but not from the same sequence

as the images in the used test dataset (again, we in fact use the train split). Examples from

this dataset can be seen in Figure 4.6.

73

(a) SAX London

(b) SAX New Forest

(c) SAX Scotland

Figure 4.1: Example test images (left) and ground-truth (right) from each of the domains in
the SAX Semantic Segmentation Dataset

74

Figure 4.2: Examples from the SAX London test dataset (with the labels omitted). Images
are chosen for each row, such that the instances in these images cause the rows to exhibit
increasing distributional shift from top to bottom.

75

Figure 4.3: Examples from the SAX New Forest test dataset (with the labels omitted). Images
are chosen for each row, such that the instances in these images cause the rows to exhibit
increasing distributional shift from top to bottom.

76

Figure 4.4: Examples from the SAX Scotland test dataset (with the labels omitted). Images
are chosen for each row, such that the instances in these images cause the rows to exhibit
increasing distributional shift from top to bottom.

77

Figure 4.5: Examples from the Cityscapes training dataset.

78

(a) Berkeley DeepDrive

(b) KITTI

(c) WildDash

Figure 4.6: Example test images from Berkeley DeepDrive, KITTI and WildDash datasets.
The examples are chosen such that the distributional shift with respect to Cityscapes in-
creases from left to right.

79

Chapter 5

Learning OoD Detection from Large-Scale

Datasets

Contents

5.1 Motivation . 81

5.1.1 Contrastive Learning . 82

5.1.2 Training Data . 84

5.2 Proposed System Design . 86

5.2.1 Overview . 86

5.2.2 Objective Function . 86

5.2.3 Masking Label Noise . 89

5.2.4 Data Augmentation . 89

5.3 Experimental Setup . 91

5.3.1 Datasets . 91

5.3.2 Network Architecture . 92

5.4 Experiments and Results . 93

5.4.1 Data Augmentation Experiments . 94

5.4.2 Data Augmentation Results . 94

5.4.3 Objective Function Experiments . 94

5.4.4 Objective Function Results . 95

80

5.4.5 Data Diversity Experiments . 95

5.4.6 Data Diversity Results . 96

5.5 Conclusion . 96

This chapter presents a method that uses a large-scale image recognition dataset as a

source of OoD data to learn distributional uncertainty estimation via OoD detection. It

achieves this by defining a challenging OoD detection task using data augmentation to

fuse in-distribution and OoD images into the same image. A segmentation network is then

trained to solve this OoD detection task using a variation on the typical contrastive loss,

and is evaluated on its ability to detect error on distributionally-shifted test datasets. This

method was published as:

• D. Williams, M. Gadd, D. De Martini & P. Newman, Fool Me Once: Robust Selective

Segmentation via Out-of-Distribution Detection with Contrastive Learning, Interna-

tional Conference on Robotics and Automation (ICRA), 2021

5.1 Motivation

This work primarily draws on the outlier exposure literature, presented in Section 3.5.6. In

addition to in-distribution data, these works train on OoD data such that the representation

between the two is separable. As previously stated in Section 3.5.6, the objective for this is

often formulated as follows:

L
OE = Epin [H(y⇤

i
, p(y|x))] + Epout [KL[Uniform{0, K� 1} k p(y|x)]] (5.1)

Where the first term of L
OE is the classification loss which minimises the entropy of p(y|x)

over pin, i.e. the data distribution defined by the in-distribution dataset. The second term

minimises the distance between p(y|x) and the uniform distribution over pout, i.e. the data

distribution defined by the OoD dataset, thereby maximising its entropy over this data dis-

tribution.

As presented in [128], [129], the key observation in this literature is that different OoD

datasets result in very different OoD performance, and so the nature of the data is a key

81

factor to consider. This motivates the method in this chapter to leverage existing datasets

that are very large and diverse, in combination with data augmentation.

Datasets such as ImageNet [97] or LAION [135] attempt to approximate the set of all

natural images, and are typically used to train neural networks to extract general semantic

features from natural images that can be fine-tuned to solve many computer vision tasks.

These trained neural networks are often evaluated on large-scale image recognition chal-

lenges, such as ImageNet [97].

The idea to leverage these datasets comes from framing OoD detection as a simplified

version of large-scale image recognition. While these recognition problems require class

assignment to some approximation of all possible classes, OoD detection requires assign-

ment either to the classes defined in the in-distribution training dataset or to the ‘unknown’

class. The fact that the sub-classes of the ‘unknown’ class, i.e. all semantic classes besides

those defined as in-distribution, need not be differentiated is what leads to the simplifica-

tion as compared to large-scale image recognition problems, i.e. we might say that the OoD

instances need to be detected, but not recognised.

Although simpler than large-scale recognition, this OoD detection task is still very chal-

lenging due to the enormity of the set of OoD instances. In this chapter, we therefore hypoth-

esise that large-scale datasets can be a key part of solving this problem. A popular method

for leveraging this type of dataset uses both contrastive learning and data augmentation.

The work in this chapter draws inspiration from this work, and adapts it for the task of OoD

detection.

Another key difference between large-scale image recognition challenges, such as Ima-

geNet, and the task in this chapter, is that we seek to detect in-distribution and OoD in-

stances on a pixel-wise basis. This requires adapting both the OoD detection training task,

and also the objective used to solve this task.

5.1.1 Contrastive Learning

Contrastive learning defines a set of objectives which compare data points that are either

positive or negative, where the positive data points should all be represented similarly and

differently from negative data points. For computer vision, the positive and negative data

82

points are typically generated using data augmentation in what is referred to as an instance

classification task. Each image has a single positive pairing, which is the augmented version

of itself, while all other images would be considered negative.

The type of data augmentation used generally involves using a crop and resize to the

original spatial dimensions, along with a wide array of colour-space augmentations. This

yields two images that contain the same semantic content on an image-wise basis, while

looking very different (often referred to as different ‘views’ of the same image). Therefore,

if a neural network represents both of these images similarly, then it must have learned an

image-wise semantic representation of images.

Negatives are used to prevent a training failure mode known as ‘feature collapse’. This

occurs when the model learns to reduce the loss by ignoring the input images, and out-

putting the same feature vector for any input. When the loss is only calculated between

positives, this is a solution that minimises the loss, and so occurs frequently. Therefore, the

loss between positives and negatives is included to prevent this failure mode.

For a pair of positives, we cannot ensure that each of the negatives are of a different

semantic class, as we do not have labels for the training dataset. This is what makes this

formulation ‘instance classification’, rather than image classification, as each image is essen-

tially defining its own class. Nonetheless, this approximation has been shown to empirically

lead to representations suited to large-scale image recognition [32], [106]. Additionally, [136]

explores how negatives provide a component of the loss that maximises the uniformity of

the learned feature representation, which is shown to be a useful characteristic. In a similar

vein, [116] uses contrastive learning to learn task-agnostic information, which is needed to

discriminate between instances belonging to the same class. This is shown to improve a

network’s representation for OoD detection.

The contrastive objective can be calculated for a pair of positive features (zi, zj) denoted

by (i, j):

L
Con
i,j

= � log
exp(z>

i
zj/⌧)P

k,k 6=i
exp(z>

i
zk/⌧)

(5.2)

This can be viewed as a cross-entropy classification objective applied to instance classifi-

cation, where the logits are calculated by feature similarity. The cosine similarity is typically

used, and so kzk2 = 1.

83

The method in this chapter uses this type of loss for the problem of learning a separable

representation between in-distribution and OoD data. More specifically, it needs to do this at

a pixel-wise level, such that the pixel-wise embeddings of in-distribution pixels are distinct

from OoD pixels.

5.1.2 Training Data

(a) (b)

Figure 5.1: An illustration of the definitions of the in-distribution and OoD datasets in Sec-
tion 5.1.2. In (a), X is the set of all possible images, and within it we can define a domain D,
which is defined by a set of classes K and their appearance. X⇤

D
is the set of all images that

contain instances of classes in K with the appearance defined by domain D. X⇤
D

is the set of
pixels within X⇤

D
which belong to the classes in K. Finally, the ideal datasets, D⇤

in and D⇤
out,

can be defined by X⇤
D

and the rest of pixel space respectively, as shown in (b), along with
their ground-truth.

Firstly, along with Figure 5.1, this section considers what we mean by in-distribution and

OoD by defining idealised datasets of each: D⇤
in and D⇤

out. They are defined as ideal, in the

sense that they would allow us to fully solve the task of OoD detection1 via straightforward

supervised learning.

For the in-distribution dataset, let us define a domain D, which is a high-level descrip-

tion of the context and conditions in which a set of semantic classes K are captured with a

given sensor, e.g. a domain could be: RGB images of driving in London, in dry, overcast

conditions, during summer. Note that the domain describes the appearance of the semantic

classes in the data collected for this domain, and is not exclusive to conditions of the domain,

i.e. a car imaged in Manchester could still be in the example domain above if it has the same
1Assuming we have a sufficiently expressive neural network and an appropriate optimizer.

84

appearance as those in London and in the described conditions.

Using the domain D, we can then define X⇤
D

(see Figure 5.1) which is the set of all images

which include instances from the domain D. Note that the images in X⇤
D

might not entirely

be composed of instances with a semantic class in K, therefore not every pixel is considered

in-distribution. Therefore, we define the in-distribution dataset with D⇤
in = {X⇤

D
,Y⇤

D
}, where

X⇤
D

= {xi | (xi 2 xD,xD 2 X⇤
D
),y⇤

i
2 K}, i.e. all the pixels in X⇤

D
that correspond to the classes

in K, and Y⇤
D

are the corresponding pixel-wise labels describing which of the K classes the

pixels belong to.

Considering the definition of what is in-distribution, we can then define the set of all OoD

images, as any image that is not from the domain D, therefore approximately X⇤
out = X�X⇤

D
,

where X is the set of all images. However, for completeness, we also have to define this on

a pixel-wise basis as there were pixels that were OoD in X⇤
D

. Therefore, X⇤
out = {xi | (xi 2

xD,xD 2 X⇤
D
),y⇤

i
/2 K} [{xi | (xi 2 xout,xout 2 X⇤

out)}. The OoD dataset is then given

by D⇤
out = {X⇤

out,Y
⇤
out}, where Y⇤

out are the corresponding pixel-wise labels, which simply

denote that each pixel is OoD.

This definition of D⇤
out demonstrates the enormous size and diversity of the ideal OoD

dataset. Factoring in the difficulties of pixel-wise labelling, the resource cost of obtaining

a good approximation of D⇤
out is prohibitively expensive. For this reason, what is instead

available is small datasets of pixel-wise labelled images for a given task, or large and diverse

datasets of natural images that contain image-wise or no annotation.

Given the size of D⇤
out, we make the determination that small specific datasets are insuf-

ficient for this task, and so must consider how the latter can be used. The problem with

this type of dataset is that the lack of pixel-wise labelling means that we do not know which

pixels are OoD in any image. For this reason, we must make the approximation that the

entirety of this dataset is OoD, introducing label noise into the problem. It also means that

instead of in-distribution and OoD instances being within the same image as is the case in

the test datasets, they are separated into different images, i.e. we have image-wise labels for

in-distribution and OoD. Training on this type of dataset will generalise poorly to pixel-wise

distributional uncertainty estimation at test-time.

Each of these problems are addressed and mitigated in the proposed method, by using a

85

Figure 5.2: For the method described in Section 5.2, this figure depicts the network architec-
ture and the losses used to train the model.

new objective to combat label noise, and data augmentation to combine in-distribution and

OoD images.

5.2 Proposed System Design

5.2.1 Overview

The network architecture for this method is found in Figure 5.2. The encoder E embeds an

image x 2 R3⇥H⇥W , resulting in feature map z 2 RF⇥Ĥ⇥Ŵ , where H, W and Ĥ, Ŵ are the

original and reduced spatial dimensions respectively. As part of the contrastive task, these

features z are projected by a two-layer MLP projection network g, yielding projected features

ẑ 2 RFg⇥Ĥ⇥Ŵ , of the same spatial dimensions, but different feature length. A decoder D takes

the features z as input, and segments them to give logits l 2 RK⇥H⇥W .

5.2.2 Objective Function

Firstly let us consider the loss L
SupCon, presented in [137], which is a supervised contrastive

loss applied to image classification and a generalisation of the contrastive loss presented

as L
Con in Equation (5.2). It maximises the cosine similarity between features belonging to

the same class, and minimises the cosine similarity between features belonging to different

classes. It reduces to the instance classification contrastive loss L
Con when each image and

its augmentation is its own class.

Let’s consider a batch element a 2 B, where B 2 RB⇥3⇥H⇥W is a batch of B images. For a,

86

all features belonging to the same class as a are considered as positives, which are: zb where

b 2 B and yb = ya. Then, since all features vectors are normalised as kzk2 = 1, it calculates

the cosine similarity between the feature for the element in question za and the features of

the same class zb as z
>
a
zb. The cosine similarity is also calculated between za and features

belonging to other classes, i.e. zc where c 2 B and yc 6= ya, which are treated as negatives.

These similarities are combined in the form of the softmax function, where the scores

to be maximised are on the numerator, while all scores are on the denominator, and all are

exponentiated. Therefore the way to minimise the loss is to maximise the similarity between

za and zb, and to minimise the similarity between za and zc.

This loss is calculated for a given element in the batch a 2 B:

L
SupCon
a

=
X

b2B:b 6=a,yb=ya

� log
exp (z>

a
zb/⌧)P

c2B:yc 6=ya

exp (z>
a
zc/⌧) +

P
b2B:b 6=a,yb=ya

exp (z>
a
zb/⌧)

(5.3)

The total loss per batch, L
SupCon, is calculated over batch elements as:

L
SupCon =

X

a2B

1

Nya
� 1

L
SupCon
a

(5.4)

where Nya
is the number of features vectors that belong to the same class as a, therefore

Nya
�1 is the number of positives.

Application to OoD Detection

OoD detection can be viewed as a binary classification problem, where the two classes are

OoD and in-distribution.

Applying L
SupCon to this binary classification problem naı̈vely would result in cluster-

ing both in-distribution and OoD instances in feature space. Given that the OoD dataset

is extremely diverse, clustering in this way is very challenging. Therefore, in designing the

objective for this method, we instead treat OoD instances only as negatives, such that, in fea-

ture space, they are pushed away from positive in-distribution instances, but are not pulled

towards each other. The result of this is a one-class contrastive learning objective, with the

in-distribution class being the superset of all classes defined in the semantic segmentation

problem.

87

If ‘in-distribution’ is defined as the positive class (y = 1) in the classification problem, we

can define the objective, L
OoDCon as:

L
OoDCon =

NX

a2B:ya=1

1

Nya=1 � 1
L

OoDCon
a

(5.5)

L
OoDCon
a

=
X

b2B:b 6=a,yb=1

� log
exp (z>

a
zb/⌧)P

c2B:c 6=a

exp (z>
a
zc/⌧)

(5.6)

In this way, the cosine similarity is never maximised between OoD features. As for the

maximisation of the similarity of features that are in-distribution, this means that we are

training the model to minimise the semantic class differences. By contrast, the supervised

learning objective encourages the classes to be maximally separated, therefore it is possi-

ble that L
OoDCon could decrease segmentation performance. This is, however, not the case,

thanks in part due to the projection network, meaning L
OoDCon is calculated on features pro-

jected from those used in semantic segmentation. This projection is performed by a 2-layer

MLP projection network g such that ẑ = g(z) and ẑ 2 RFg⇥Ĥ⇥Ŵ , where Fg is the projected

feature length. Additionally, [138] suggests that maximising the similarity between the em-

beddings of all classes leads to useful regularisation and learning of class- and task-agnostic

information, which is useful for OoD detection as discussed in Section 3.5.

Therefore, in actual fact, L
OoDCon is given by:

L
OoDCon =

NX

a2B:ya=1

1

Nya=1 � 1
L

OoDCon
a

(5.7)

L
OoDCon
a

=
X

b2B:b 6=a,yb=1

� log
exp (ẑ>

a
ẑb/⌧)P

c2B:c 6=a

exp (ẑ>
a
ẑc/⌧)

(5.8)

Where ẑ 2 RFg is a projected pixel-wise feature.

Overall Objective

This contrastive objective is combined with the cross-entropy segmentation objective L
s to

give the following overall objective, L:

L = L
s + �L

OoDCon (5.9)

88

Where L
s =

P
N

n=1

P
H⇥W

i=1 ȳ
⇤ log p(y|x), as described in Section 2.1.3, and � = 0.1 to balance

the magnitudes of each constituent objective, which we found to work well empirically.

5.2.3 Masking Label Noise

As we use a large-scale unlabelled image dataset, there will possibly be some semantic over-

lap between this and the smaller labelled dataset. If this is true, L
OoDCon then minimises the

similarity between features from images that are ultimately very similar, thereby resulting

in the learning of features that are less sensitive to semantics. In order to avoid this, we

introduce a method for mitigating this problem.

We augment the L
OoDCon objective by introducing MLN in the following way:

L
OoDCon
a

=
X

b2B:b 6=a,yb=1

� log
exp (ẑ>

a
ẑb/⌧)P

c2B:c 6=a

MLN
ac

exp (ẑ>
a
ẑc/⌧)

(5.10)

where this binary mask MLN, for a given in-distribution element a and OoD element c, is

calculated as:

MLN
ac

=

8
>><

>>:

0 if max(ẑ>
a
ẑc) > tR and yc = 0

1 otherwise
(5.11)

This mask is 0 when the similarity between an in-distribution feature vector and OoD fea-

ture vector exceeds a threshold tR. Therefore, tR is a hyperparameter that rejects a certain

proportion R of the OoD features in the batch. Here, R is referred to as the rejection ratio.

In [137], it is noted that the gradient contributions of hard positives and negatives dom-

inate the batch updates. Therefore MLN reduces the impact of false hard negatives, i.e. fea-

tures that are similar according to ground-truth but are falsely associated with different

classes in our approximate labelling.

5.2.4 Data Augmentation

As discussed previously, the datasets we have for training are comprised of labelled im-

ages that are in-distribution and unlabelled images that are defined as entirely OoD. If the

training task were set up such that the model had to classify pixel-wise features as either

in-distribution or OoD but the input images were entirely of either class, then this task is no

89

(a) In-Distribution! In-Distribution (b) In-Distribution! OoD

(c) OoD! In-Distribution (d) OoD! OoD

Figure 5.3: Examples of training images generated via our OoDMix data augmentation.
Each combination of crop and background is shown across the sub-figures (denoted by Crop
! Background)

more difficult than image-wise OoD detection. Therefore, it is highly likely that the model

would, at test time, generalise poorly to difficult pixel-wise distributional uncertainty esti-

mation.

For this reason, the in-distribution and OoD images need to be combined during training

in such a way to make the training task more difficult. This is achieved by devising a data

augmentation scheme specifically for this setting. It initially comprises of cropping images

from one dataset into another, i.e. OoD into in-distribution, in-distribution into OoD.

90

This, however, only makes the problem slightly more difficult, as this can be solved by

detecting the crop and then treating crop and the background separately, and thus is again

similar to image-wise OoD detection. Detecting the location of the crop is simple due to

the large gradients at the crop boundary, and the large colour-space differences between the

in-distribution and OoD dataset.

We take several steps to make this more challenging. Firstly, we can also crop in-distribution

into in-distribution and OoD into OoD, as this prevents the detection of a crop’s origin from

its background. We can also remove the large gradients found at the crop boundaries by

combining the crop and background with a Gaussian blur kernel. Lastly, the images are

transformed into HSV space, and the colour of the crop is adjusted such that the mean hue

and value are the same for the crop as that of the pixels they are replacing in the background.

Each of these steps blend the OoD crop into in-distribution images and vice versa, in

such a way that the problem of representing them differently is made much harder. The

result is thus a model that can more robustly separate in-distribution and OoD instances.

See Figure 5.3 for examples of augmented images.

As per more traditional data augmentation, the final step is then to perform random

colour-space augmentations, namely ColorJitter in PyTorch [139].

5.3 Experimental Setup

This section describes the specifics of the datasets and neural network architectures used in

the experiments presented in Section 5.4.

5.3.1 Datasets

The labelled in-distribution, i.e. source, dataset in this work is Cityscapes [25], as described

in Section 4.3.1. The source dataset also contains a small proportion of pixels that are consid-

ered as void, i.e. they were not annotated due to ambiguity or not belonging to the defined

classes. For this reason, they are treated as OoD.

ImageNet is used as the unlabelled OoD, i.e. target, training dataset, which contains

1000 classes with approximately 1000 images for each. Image-wise labels are provided for

91

these images, however we do not make use of them. This is because we have developed

our training algorithm to not require such labelling, allowing it to use unlabelled datasets,

which are typically much larger and more diverse, e.g. LAION-5B [135]. Not only this,

an image defined as the ImageNet class hummingbird can have many pixels belonging

to the Cityscapes semantic class vegetation, meaning that according to the image-wise

labels, the entire image is OoD, however the majority of the pixels are indeed in-distribution.

ImageNet also contains images of the Cityscapes known classes, e.g. cars, buildings, and

some of these will have similar appearance as those in Cityscapes, which contributes to the

label noise discussed and mitigated in Section 5.2.3.

Testing primarily occurs on the driving dataset WildDash [134]. As discussed in Sec-

tion 4.3.3, WildDash is an extremely diverse driving dataset, and so is the most appropriate

dataset to evaluate the distributional uncertainty estimation performance across the breadth

of driving data.

We perform additional testing on the SAX test datasets, discussed in more detail in Sec-

tion 4.2, which are narrower datasets with an increasing distributional shift with respect to

Cityscapes in the following order: SAX London, SAX New Forest, SAX Scotland. These

test datasets allows us to investigate how the magnitude of distributional shift affects the

performance of each method.

5.3.2 Network Architecture

Figure 5.4: A depiction of the network architecture including the specific modules used to
define the encoder and decoder: E = ASPP � ResNet and D = h respectively.

The segmentation network architecture used in the experiments for this method is DeepLabV3+

92

[140]. It is split into encoder and decoder, for which a ResNet-18 [35] and Atrous Spatial

Pyramid Pooling (ASPP) module is used respectively. In the implementation used in this

work2, an additional segmentation head is used on top of the ASPP decoder.

In contrast to the definitions in [140], we define the encoder as E = ASPP � ResNet, i.e.

as both the ResNet and the ASPP module. The decoder D is then simply the segmentation

head, h. These changes can be seen in Figure 5.4, which elaborates on Figure 5.2.

The encoder E is therefore represented by the following transform: E : R3⇥H⇥W
!

R256⇥Ĥ⇥Ŵ , i.e. the dimensionality of the features are 256 and the downsampled spatial di-

mensions are (Ĥ, Ŵ), where Ĥ = H

4 and Ŵ = W

4 .

The decoder D, implemented as the segmentation head h, is a single 1 ⇥ 1 convolutional

layer which returns the downsampled logits. Therefore, D : R256⇥Ĥ⇥Ŵ
! RK⇥Ĥ⇥Ŵ , which is

followed by bilinear upsampling to give the final logits of size RK⇥H⇥W .

As mentioned in Section 5.2.2, this method also employs a projection network g, which

is a two-layer MLP, represented by the following transform: g : R256⇥Ĥ⇥Ŵ
! R128⇥Ĥ⇥Ŵ

!

RFg⇥Ĥ⇥Ŵ , where Fg = 128. This projection network g is regularised with a dropout layer

with a dropout ratio of 0.5.

By using our definition of E, we calculate the contrastive loss on features that are pro-

jected from much deeper in the network. This enforces z, which is only a linear transforma-

tion away from the logits l, to encode information suited to solving the contrastive task, as

well as semantic segmentation-specific information. Empirically, this leads to better distri-

butional uncertainty estimation with pmax, because this additional semantic segmentation-

agnostic information helps to spread out probability mass in p for OoD instances. This is

in contrast to using features after the ResNet, i.e. E = ResNet, which were empirically less

effective as the ASPP module is likely filtering out all but the semantic segmentation-specific

information, leading to decreased misclassification detection performance.

5.4 Experiments and Results

This section details the experiments designed to evaluate the method presented in this chap-

ter, and presents the results in Table 5.2, Table 5.1, Table 5.3, Table 5.4 and Figure 5.5.
2Based on https://github.com/qubvel/segmentation_models.pytorch

93

https://github.com/qubvel/segmentation_models.pytorch

5.4.1 Data Augmentation Experiments

In this chapter, we have introduced a data augmentation scheme that combines in-distribution

and OoD images into the same image, in such a way that the task of separating the two is

made more difficult. By increasing the difficulty of the OoD detection training task, this

chapter has argued that we can expect increased robustness from our model for this task.

We empirically determine that this is true by training a model on three variants of data

augmentation: ImageWise, CutMix and OoDMix. In ImageWise, in-distribution and OoD

images are included as separate images in a training batch, as is seen in [51], [128]. CutMix

is based on a regularisation method presented in [141] and crops images into other images,

but does not align them in colour-space or blur the edges of the boundaries between crop

and background. Finally, OoDMix is our proposed data augmentation scheme, described in

Section 5.2.4.

5.4.2 Data Augmentation Results

Using our proposed training algorithm, we train models using each of the data augmenta-

tion schemes described in Section 5.4.1. In Table 5.1, we can see that using OoDMix results

in significantly better misclassification detection in terms of AUPR for each of the distribu-

tionally shifted domains compared to CutMix and ImageWise. The same is also true for

MaxF1/2 and MaxAMD, as shown in Table 5.3 and Table 5.4. As an example, for WildDash,

the MaxF1/2 for OoDCon-OoDMix is 0.801 versus 0.634 and 0.670 for OoDCon-Cutmix and

OoDCon-ImageWise respectively, and for the much higher p(a, c) of 0.432 versus 0.234 and

0.223. These results show that increasing the difficulty of the training task via the data aug-

mentation scheme proposed in this chapter yields a model that is better able to discern be-

tween in-distribution and OoD pixels, and therefore detect error on distributionally shifted

test datasets.

5.4.3 Objective Function Experiments

In order to investigate the effectiveness of our proposed objective function L
OoDCon, we com-

pare it to baselines which use the same data augmentation scheme. The first baseline is KL,

seen in [129] and Equation (5.1). Secondly, we consider VoidSeg, where the model outputs

94

additional predictions for the void class, and is trained to segment the data augmented

OoD pixels as void. Instead of pmax, this method uses (1� p(y = void|x)) as the model con-

fidence. Finally, this method also considers a network trained only with the cross-entropy

segmentation loss L
s, named Vanilla.

Additionally, we consider two variants of our proposed objective: OoDCon and OoDCon-LN,

with the latter having a rejection ratio R of 0.2, and the former of 0, i.e. every element of MLN

is 1, and thus label noise is in no way mitigated.

5.4.4 Objective Function Results

Table 5.1, Table 5.3 and Table 5.4, suggest that OoDCon-LN is the best performing objective

function for SAX New Forest, SAX Scotland and WildDash, which are the most distribution-

ally shifted domains. For WildDash, the MaxF1/2 @ p(a, c) of OoDCon-LN-OoDMix is 0.809

@ 0.439, versus 0.801 @ 0.432 for OoDCon-OoDMix, therefore, for this threshold, more seg-

mentation error is being detected and fewer pixels are being rejected as unknown as a result

of the label noise mask.

However, OoDCon, i.e. when R = 0, performs better in terms of MaxF1/2 and MaxAMD

for SAX London, which is relatively similar to Cityscapes. This is possibly due to the in-

herent trade-off in using the label noise mask, which is between the quantity of label noise

and the magnitude of the enforced separation between the in-distribution and OoD dataset.

When R is lower, the effective label noise for the task is higher, however there is a greater en-

forced separation between the two datasets. In the case of smaller distributional shifts on the

test dataset, it is perhaps more important to enforce a more aggressive separation between

datasets during training than to remove label noise. By contrast, for larger distributional

shifts on the test dataset, it is perhaps more important to remove label noise as there already

exists a larger separation between source and target domains.

5.4.5 Data Diversity Experiments

In this chapter, we have opted to use a large-scale image dataset due to the discussion in

Section 5.1.2, which demonstrates the enormity of the set of possible OoD images. In order

to empirically determine the benefit of this diversity in the OoD training dataset, we use a

95

subset of the ImageNet dataset.

This dataset includes 10 classes instead of 1000, resulting in a dataset of 13, 000 images.

The 10 classes were selected as the closest classes to those in the CIFAR-10 dataset (as deter-

mined by [142]), which is a commonly used small-scale image classification dataset. We use

this subset of ImageNet instead of CIFAR-10, due to the latter’s significantly smaller image

resolution. The classes considered are as follows: airliner, beach wagon, hummingbird,

siamese cat, ox, golden retriever, tailed frog, zebra, container ship, trailer

truck.

This dataset is used with OoDMix data augmentation for direct comparison with the

OoDCon-OoDMix experiments, and the results for this experiment can be found with the

name SubSet.

5.4.6 Data Diversity Results

By comparing results for OoDCon-OoDMix and OoDCon-SubSet, we can see that adding

diversity to the OoD training dataset improves distributional uncertainty estimation. For

almost every distributionally-shifted domain, the addition of the extra 990 classes improved

almost every misclassification detection metric. Specifically, for WildDash, the MaxF1/2 @

p(a, c) was 0.801 @ 0.432 for OoDCon-OoDMix, while it was only 0.761 @ 0.370 for OoDCon-SubSet

with the reduced dataset, therefore fewer inaccurate pixels are detected and fewer pixels

were confidently and correctly segmented by the latter.

The performance using the ImageNet subset still outperformed Vanilla on all metrics,

showing that using the reduced ImageNet dataset was beneficial, however it is simply less

beneficial than using a larger-scale dataset.

5.5 Conclusion

This chapter presented a method that posed distributional uncertainty estimation as a sim-

plification of a large-scale image recognition problem, and correspondingly leveraged a

large-scale image dataset. The method defines a training task that combines in-distribution

and OoD images using data augmentation, and then a segmentation network is trained to

96

0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
on

Cityscapes

0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

SAX London

0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

SAX New Forest

0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

SAX Scotland

0.2 0.4 0.6 0.8 1.0

Recall

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

WildDash

KL-OoDMix Vanilla VoidSeg-OoDMix OoDCon-OoDMix OoDCon-LN-OoDMix

(a) Precision versus Recall

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.4

0.5

0.6

0.7

0.8

0.9

A
M

D

Cityscapes

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.4

0.5

0.6

0.7

0.8

0.9

A
M

D

SAX London

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.4

0.5

0.6

0.7

0.8

0.9

A
M

D

SAX New Forest

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.4

0.5

0.6

0.7

0.8

0.9

A
M

D

SAX Scotland

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.4

0.5

0.6

0.7

0.8

0.9

A
M

D

WildDash

KL-OoDMix Vanilla VoidSeg-OoDMix OoDCon-OoDMix OoDCon-LN-OoDMix

(b) AMD versus p(a, c)

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
0.

5

Cityscapes

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
0.

5

SAX London

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
0.

5

SAX New Forest

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
0.

5

SAX Scotland

0.0 0.2 0.4 0.6 0.8

p(a, c)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
0.

5

WildDash

KL-OoDMix Vanilla VoidSeg-OoDMix OoDCon-OoDMix OoDCon-LN-OoDMix

(c) F1/2 versus p(a, c)

Figure 5.5: Misclassification detection performance evaluated for three metrics over a range
of domains. The left-most domain is the in-distribution Cityscapes domain, and provides
the labelled training dataset for learning semantic segmentation. From left to right, the
SAX domains are increasingly distributionally-shifted from Cityscapes, and so these plots
measure the models’ ability to detect regions of segmentation error which are increasingly
arising from left to right due to distributional shift. The WildDash plots present the models’
quality of uncertainty estimation on a very diverse distributionally-shifted driving dataset.

97

AUPR

Method CS LDN NF SCOT WD

Ba
se

lin
es Vanilla 0.926 0.717 0.635 0.527 0.712

KL-OoDMix 0.960 0.891 0.889 0.728 0.810

VoidSeg-OoDMix 0.941 0.896 0.892 0.602 0.767

A
bl

at
io

ns
KL-ImageWise 0.907 0.636 0.434 0.239 0.610

KL-CutMix 0.938 0.545 0.392 0.200 0.528

KL-Subset 0.935 0.856 0.865 0.680 0.775

OoDCon-ImageWise 0.908 0.767 0.714 0.472 0.711

OoDCon-CutMix 0.940 0.573 0.488 0.255 0.680

OoDCon-Subset 0.914 0.843 0.810 0.639 0.820

O
ur

s OoDCon-OoDMix 0.904 0.864 0.882 0.684 0.862

OoDCon-LN-OoDMix 0.893 0.878 0.896 0.750 0.872

Table 5.1: Misclassification Detection performance in terms of AUPR for a range of test do-
mains.

differentiate between the two. Although the training task is OoD detection, the trained seg-

mentation networks are evaluated on their ability to perform misclassification detection, i.e.

the test setting considers uncertainty estimation, rather than OoD detection.

The experiments in this chapter show that the following factors are important for learn-

ing pixel-wise distributional uncertainty estimation: (1) the magnitude of the visual differ-

ence between in-distribution and OoD pixels, and (2) the diversity of the OoD dataset.

The first factor is supported by the literature [128], [129], and makes intuitive sense, as

when the in-distribution and OoD are more similar, the training task of separating them is

more challenging, yielding a more robust model. As for the second factor, adding diver-

sity to a dataset is a common method for achieving a more general model, however, this is

even more important for this problem due to the enormous diversity of the set of all OoD

instances, as discussed in Section 5.1.2.

By choosing a large-scale image dataset in this chapter, we have optimised for the second

factor and have tried to optimise for the first factor using data augmentation. Nevertheless,

we hypothesize that there are better ways of optimising for the first factor, i.e. methods

for defining a more challenging training task of this kind. As discussed in Section 1.4, this

hypothesis is a key driver of work in Chapter 6 and Chapter 7, in which distributionally

shifted driving data is used instead of a large-scale image recognition dataset.

98

AUROC

Method CS LDN NF SCOT WD

Ba
se

lin
es Vanilla 0.824 0.723 0.686 0.674 0.728

KL-OoDMix 0.874 0.777 0.765 0.760 0.751

VoidSeg-OoDMix 0.889 0.785 0.769 0.677 0.653
A

bl
at

io
ns

KL-ImageWise 0.827 0.738 0.653 0.587 0.713

KL-CutMix 0.847 0.732 0.682 0.641 0.748

KL-Subset 0.850 0.726 0.751 0.754 0.736

OoDCon-ImageWise 0.857 0.790 0.764 0.705 0.762

OoDCon-CutMix 0.848 0.697 0.679 0.600 0.717

OoDCon-Subset 0.788 0.740 0.726 0.736 0.775

O
ur

s OoDCon-OoDMix 0.759 0.732 0.761 0.713 0.795

OoDCon-LN-OoDMix 0.745 0.758 0.782 0.738 0.799

Table 5.2: Misclassification Detection performance in terms of AUROC for a range of test
domains.

MaxF1/2 @ p(a, c)

Method CS LDN NF SCOT WD

Ba
se

lin
es Vanilla 0.864 @ 0.585 0.726 @ 0.395 0.687 @ 0.370 0.555 @ 0.205 0.717 @ 0.364

KL-OoDMix 0.909 @ 0.678 0.808 @ 0.485 0.808 @ 0.501 0.685 @ 0.210 0.736 @ 0.354

VoidSeg-OoDMix 0.910 @ 0.672 0.818 @ 0.480 0.816 @ 0.503 0.592 @ 0.241 0.701 @ 0.456

A
bl

at
io

ns

KL-ImageWise 0.844 @ 0.506 0.603 @ 0.180 0.428 @ 0.100 0.261 @ 0.048 0.572 @ 0.156

KL-CutMix 0.872 @ 0.561 0.522 @ 0.082 0.397 @ 0.060 0.253 @ 0.016 0.524 @ 0.085

KL-Subset 0.900 @ 0.678 0.793 @ 0.528 0.796 @ 0.497 0.637 @ 0.184 0.710 @ 0.312

OoDCon-ImageWise 0.888 @ 0.592 0.722 @ 0.236 0.676 @ 0.233 0.457 @ 0.092 0.670 @ 0.223

OoDCon-CutMix 0.891 @ 0.638 0.552 @ 0.160 0.482 @ 0.104 0.271 @ 0.034 0.634 @ 0.234

OoDCon-Subset 0.884 @ 0.690 0.805 @ 0.544 0.791 @ 0.518 0.618 @ 0.176 0.761 @ 0.370

O
ur

s OoDCon-OoDMix 0.88 @ 0.708 0.825 @ 0.599 0.834 @ 0.594 0.642 @ 0.245 0.801 @ 0.432

OoDCon-LN-OoDMix 0.876 @ 0.705 0.822 @ 0.573 0.841 @ 0.579 0.691 @ 0.263 0.809 @ 0.439

Table 5.3: Misclassification Detection performance in terms of MaxF1/2 @ p(a, c) for a range
of test domains. Entries are struck out if their p(a, c) is too low, as this threshold value leads
to the assignment of class to too few pixels.

99

MaxAMD @ p(a, c)

Method CS LDN NF SCOT WD

Ba
se

lin
es Vanilla 0.798 @ 0.682 0.689 @ 0.444 0.668 @ 0.396 0.657 @ 0.164 0.689 @ 0.405

KL-OoDMix 0.855 @ 0.755 0.733 @ 0.599 0.728 @ 0.606 0.726 @ 0.231 0.685 @ 0.444

VoidSeg-OoDMix 0.866 @ 0.770 0.738 @ 0.606 0.739 @ 0.645 0.644 @ 0.217 0.640 @ 0.562

A
bl

at
io

ns

KL-ImageWise 0.771 @ 0.603 0.707 @ 0.170 0.732 @ 0.031 0.825 @ 0.001 0.701 @ 0.134

KL-CutMix 0.799 @ 0.657 0.773 @ 0.064 0.795 @ 0.020 0.893 @ 0.000 0.790 @ 0.065

KL-Subset 0.847 @ 0.755 0.722 @ 0.610 0.724 @ 0.595 0.721 @ 0.188 0.672 @ 0.368

OoDCon-ImageWise 0.818 @ 0.674 0.738 @ 0.266 0.713 @ 0.253 0.769 @ 0.041 0.715 @ 0.241

OoDCon-CutMix 0.830 @ 0.716 0.692 @ 0.129 0.736 @ 0.061 0.836 @ 0.006 0.671 @ 0.238

OoDCon-Subset 0.829 @ 0.758 0.744 @ 0.613 0.732 @ 0.582 0.715 @ 0.174 0.711 @ 0.437

O
ur

s OoDCon-OoDMix 0.829 @ 0.771 0.765 @ 0.670 0.770 @ 0.663 0.668 @ 0.252 0.737 @ 0.511

OoDCon-LN-OoDMix 0.824 @ 0.767 0.759 @ 0.644 0.776 @ 0.662 0.682 @ 0.292 0.740 @ 0.524

Table 5.4: Misclassification Detection performance in terms of MaxAMD @ p(a, c) for a range
of test domains. Entries are struck out if their p(a, c) is too low, as this threshold value leads
to the assignment of class to too few pixels.

100

Chapter 6

Learning Uncertainty Estimation from

Uncurated Domain Data

Contents

6.1 Motivation . 103

6.1.1 Using Unlabelled Out-of-Distribution Driving Data 103

6.1.2 Introduction to �-SSL . 105

6.1.3 How to tailor self-supervised methods for uncertainty estimation? . 106

6.2 Preliminaries . 107

6.2.1 Segmentation via Prototypes . 107

6.2.2 Uncertainty Estimation via a Feature-Space Threshold 108

6.3 Crop & Resize Data Augmentation . 109

6.3.1 Method . 109

6.4 Training Architecture . 110

6.5 Training Objective . 112

6.5.1 Calculating � . 113

6.5.2 Learning E . 113

6.5.3 Learning the Task . 115

6.5.4 Preventing Feature Collapse . 115

6.6 Training Procedure . 117

101

6.6.1 Model Pretraining . 117

6.6.2 Domain-based Curriculae . 118

6.7 Network Architecture . 119

6.8 Baselines . 119

6.9 Evaluating uncertainty estimation on narrow target domains 121

6.9.1 Source: Cityscapes, Target: SAX Test Datasets 122

6.9.2 Effect of distributional shift . 124

6.9.3 Source: Cityscapes, Target: KITTI & BDD 126

6.9.4 Source: BDD, Target: SAX Test Datasets 128

6.10 Evaluating uncertainty estimation on a general target domain 132

6.10.1 Target: WildDash . 132

6.11 Miscellaneous experiments . 133

6.11.1 Calculation of the optimal threshold 134

6.11.2 Calculating thresholds across domains 135

6.11.3 Latency Evaluation . 136

6.12 Qualitative Results . 137

6.13 Ablation Studies . 139

6.13.1 Estimating Uncertainty via Distance to Prototypes 139

6.13.2 Importance of target domain images 139

6.13.3 Importance of M� in the training objective 141

6.13.4 Importance of Branch Asymmetry . 141

6.13.5 Importance of Lu and Lp . 142

6.13.6 Importance of Crop-and-Resize Data Augmentation 142

6.13.7 Importance of using hard M� . 143

6.13.8 Possibility of class-wise thresholds . 143

6.13.9 The need for large batch sizes to calculate prototypes 144

6.14 Conclusion . 146

102

This chapter presents a method that learns distributional uncertainty estimation through

training on OoD driving data, which contains in-distribution, near-distribution and OoD

instances all within a single image. This is in contrast to Chapter 5, where a large-scale image

dataset was used, where the entirety of every image was treated as OoD. This new type of

OoD data is challenging to train with, however the previous chapter suggests that a smaller

distributional shift leads to more generality and robustness than using a OoD dataset with

a large distributional shift.

This method was first presented in:

• D. Williams, D. De Martini, M. Gadd, and P. Newman, “Mitigating Distributional Shift

in Semantic Segmentation via Uncertainty Estimation from Unlabelled Data”, IEEE

Transactions on Robotics (T-RO), 2024.

6.1 Motivation

The method in this chapter is influenced by insights from Chapter 5, where it was shown

that the nature of the data used to learn distributional uncertainty estimation, i.e. the target

domain dataset, is important.

In the previous chapter, the target domain dataset was a large-scale image recognition

dataset, where many of the images were very different to the source domain, i.e. the la-

belled training dataset. We found in the literature, and through experiment, that the more

distinct the source and target domains are, the lower the quality of learned distributional un-

certainty estimation as a result of a less robust separation of in-distribution and OoD data.

These findings motivated us to look at what alternatives could be used as the target domain

dataset.

6.1.1 Using Unlabelled Out-of-Distribution Driving Data

The literature in Section 3.5.6 and empirical evidence discussed in Chapter 5 advocate the

use of a training dataset containing so-called ‘near-distribution’ instances, i.e. instances that

are OoD, but similar to the in-distribution data in terms of semantics or appearance. This

103

type of training dataset allows for more general and robust distributional uncertainty esti-

mation.

For our setting, a type of data that contains ‘near-distribution’ instances alongside in-

distribution and OoD is distributionally-shifted driving data. For images collected by road

vehicles, the majority of pixels often remain in-distribution, e.g. roads, vegetation, sky can

often look similar in different lighting and geographic locations. However, due to the set-

ting’s outdoor and open nature, the images also contain many instances that are visually

or semantically different, which are adjacent to the in-distribution pixels. Distributionally-

shifted driving images from a given target domain therefore perhaps provide the opportu-

nity to learn a representation that is more suited to general distributional uncertainty esti-

mation on a number of different target domains.

Another benefit of this type of training on images from a given target domain, is that the

uncertainty estimation performance is likely to be particularly good in that target domain

due to the reduction in gap between training and testing. Therefore, if one type of distribu-

tional shift from the robot’s ODD is likelier to occur, e.g. the same geographic location, but

in bad weather, or the same conditions but slightly outside the geographic location of the

ODD, the model can be made especially good at detecting error due to this shift.

Distributionally-shifted driving data sits in between the two types of data seen in aleatoric

uncertainty estimation and learned OoD detection. For aleatoric uncertainty estimation

methods, discussed in Section 3.4.5, the model would be trained to detect error on in-

distribution driving data, i.e. there is no distributional shift or target domain considered.

By contrast, as discussed in Section 3.5.6 and practised in Chapter 5, for learned OoD detec-

tion, distributionally shifted data is considered, however it is no longer driving data. The

argument made in this section is that by drawing on aspects from both methods, and train-

ing using distributionally-shifted driving data, uncertainty estimation can be improved both

on the specific target domain chosen, as well as more generally for any given target domain.

Challenges

Using data with in-distribution, near-distribution and OoD instances all within the same im-

age is desirable, however it also introduces a significant challenge. For the learned methods

104

discussed, pixel-wise ground-truth for the training images is required. For aleatoric un-

certainty estimation, ground-truth is used to measure error, and thus determine the image

regions for which high uncertainty is appropriate. For learned OoD detection, pixel-wise

ground truth is needed to determine which pixels are in-distribution and which are OoD.

This requirement for pixel-wise ground-truth would severely limit the diversity of the

dataset, which, in turn, limits the quality of distributional uncertainty estimation, as dis-

cussed in Section 5.4. For this reason, this chapter presents a method to train a model to

learn uncertainty estimation using unlabelled images, in contrast to methods discussed in

Section 3.4.5 and Section 3.5.6. As a result, this type of method is tractable in robotics set-

tings, because all that is required for the collection of a large training dataset is: the avail-

ability of a robot, and access to domains which are distinct from the source domain.

6.1.2 Introduction to �-SSL

The first thing to consider is how to generate a signal, without the use of labels, that can be

used train the model such that image pixels that lead to segmentation error are separable

from pixels that are correctly segmented.

One productive vein of research in computer vision uses self-supervised learning to learn

a representation without labels, as discussed previously in Section 3.5.3 and Chapter 5. In

self-supervised learning methods, models are often trained with the objective of learning a

semantic representation, without these semantic classes being defined by annotation, and

instead by using data augmentation. This has been shown to work extremely well in a

large-scale setting, where the neural networks and datasets are both very large.

One method for evaluating the ‘quality’ of the learned representation is to perform linear

probing experiments. These experiments train a linear layer on top of a learned representa-

tion in a supervised manner, and show very high performance on large-scale image classifi-

cation such as ImageNet [31], [32], [106], [108]. This shows that this type of self-supervised

training is very effective at training large neural networks to cluster image data, such that

the clusters are linearly separable and semantically meaningful.

For this chapter, the significance of this is that these works have showed that using data

augmentation is a very effective way of circumventing the requirement for ground-truth

105

annotation. In supervised learning, labels are used to measure classification error, which

the model can then be trained to minimise; however in self-supervised learning, the data

augmentation is instead approximately measuring classification error. Instead of measuring

and minimising error, this raises the possibility of using data augmentation to measure and

detect error.

6.1.3 How to tailor self-supervised methods for uncertainty estimation?

In this chapter, we consider the self-supervised task of crop-and-resize data augmentation.

The method works by having one image, which you crop, resize to its previous size, then ap-

ply a colour-space transform. This is done such that the image-wise semantic content is pre-

served between the two images (or views), while also looking significantly different. Then,

by training a model to learn a feature space which is invariant to this form of data augmen-

tation, the assumption is that the model produces embeddings which describes semantics.

A model’s inconsistency in embedding is measured, and the SSL objective minimises this

inconsistency.

A method for learning uncertainty estimation can therefore be devised by (1) measur-

ing a model’s inconsistency with respect to data augmentation, (2) designing a mechanism

whereby the model can express uncertainty, and (3) defining an objective that trains the

model to output high uncertainty for pixels where the model is inconsistent and low uncer-

tainty when the model is consistent.

The aims of (1) and (2) are common between learning uncertainty estimation and SSL,

however the implementation choices between the method in this chapter and SSL literature

are different.

For (1), instead of measuring inconsistency in the model embeddings, i.e. considering

the distance between high-dimensional features, our method measures the inconsistency

between segmentations. This is because segmentation inconsistency is a more useful rep-

resentation of segmentation error than the more abstract embedding inconsistency. As will

be described in Section 6.5, segmentation inconsistency is represented by a binary mask Mc

relating to whether the most probable classes are equal or not, in a way that is not possible

with embedding consistency without introducing a threshold.

106

For (2), we have chosen to design a model that outputs uncertainty as distance in feature

space, however it is the distance from a given pixel-wise feature to its nearest ‘prototype’.

The prototypes are calculated from the labelled source images, and are the mean unit feature

vectors for each of the semantic classes. In this way, the distance between a pixel-wise fea-

ture vector and its nearest prototype describes the difference between this image region and

the labelled training data for its most similar class. If this distance is large, then this image

region is unlike anything seen in the labelled training images. This is similar to the idea of

using a per-class Gaussian Mixture Model (GMM) seen in DUMs in Section 3.5.2, where the

covariance matrix is fixed to the identity matrix.

How this measure of uncertainty is trained to be predictive of segmentation inconsis-

tency for (3) is discussed in Section 6.5.

6.2 Preliminaries

The ultimate aim of this method is to train a neural network that can: (1) segment an image

x 2 R3⇥H⇥W into a set of K semantic classes, giving y 2 {n 2 Z | 1  n  K}
H⇥W , where

each pixel is assigned to a member of the set of known classes is given by K = {k1, . . . kK},

and (2) perform uncertainty estimation and yield an uncertainty mask, M�
2 {0, 1}H⇥W

which assigns a given pixel to 1 for certain, and 0 for uncertain. As described in Chapter 4,

the model will be evaluated in terms of its misclassification detection performance, where,

for the ideal model at a pixel location i, M�

i
= 1 when yi = y⇤

i
, and M�

i
= 0 when yi 6= y⇤

i
.

6.2.1 Segmentation via Prototypes

An image is embedded using both an encoder E : R3⇥H⇥W
! RF⇥h⇥w and a projection

network g⇢ : RF⇥h⇥w
! RF⇥h⇥w, where F is the feature length, and h and w are the down-

sampled spatial dimensions.

From these embeddings, prototypes ⇡S 2 RF⇥K are calculated which represent the class-

wise mean feature vector. These are calculated using a batch of N images XS 2 RN⇥3⇥W⇥H ,

with corresponding one-hot labels Ȳ⇤
S 2 RN⇥h⇥w⇥K , which have been downsampled to the

same spatial dimensions as the embeddings. The batch of images XS are embedded as above

107

to given a batch of embeddings, ZS 2 RN⇥h⇥w⇥F . The prototypes can then be calculated for

each class as:

⇡S =
Z>

S Ȳ
⇤
S

kZ>
S Ȳ

⇤
Sk2

(6.1)

These prototypes can then be used to segment an image by calculating the similarity

between each pixel feature of a given target image and the prototypes. The low-resolution

logits l̃ of the i-th pixel embedding zi 2 RF⇥1 is given by:

l̃i = z>
i
⇡S (6.2)

As both zi and each of ⇡S are of unit-length, the logits are the cosine similarities between a

pixel feature and each of the class prototypes.

In order to produce full-resolution segmentation maps, the downsampled logits l̃ 2

Rh⇥w⇥K are bilinearly upsampled to l 2 RH⇥W⇥K . Finally, per-pixel categorical distribu-

tions, p 2 [0, 1]H⇥W⇥K , and segmentation map y 2 {n 2 Z | 1  n  K}
H⇥W are calculated

as:

p = softmax⌧ (l), y = argmax(l) (6.3)

6.2.2 Uncertainty Estimation via a Feature-Space Threshold

Distributional uncertainty can be thought of as the uncertainty of a pixel not being assigned

correctly to one of the known classes, i.e. p(y /2 K|x). Therefore we need a way to relate

distance (or in this case similarity) in feature space, i.e. the logit values, to p(y /2 K|x). This

method represents uncertainty by concatenating a threshold parameter � to the logits:

p(y|x) = softmax⌧ (li � �) 2 RK+1 (6.4)

Where p(y|x) = [p(y = k1), . . . , p(y = kK |x), p(y /2 K|x)] = softmax⌧ ([li,1, . . . , li,K , �])

If we consider the maximum logit prior to concatenation, max(li), this is the similarity

between the pixel feature and its nearest prototype, which is a measure of the model’s confi-

dence. However, after concatenation, if � exceeds this estimate of the model confidence then

argmax(li � �) = K+1. This means that instead of being assigned to a known class k 2 K,

108

the pixel is assigned to ‘unknown’.

Therefore, � is operating as a threshold on the model’s confidence, and represents a re-

gion around each prototype, within which the model is confident, and outside of which the

model is uncertain. Formally, we can calculate the aforementioned uncertainty mask in this

manner as:

M�

i
= 1� [argmax(li � �) = K+1] (6.5)

Where is the indicator function.

6.3 Crop & Resize Data Augmentation

In lieu of supervision, data augmentation is used to generate an approximation of where

errors likely occur. Typically, data augmentation takes the form of applying both a crop-

and-resize transform, along with a colour-space transform. In the context of learning a rep-

resentation for image classification, it is important that, while different in appearance, both

crops primarily describe one semantic class. Therefore, both crops should be embedded to

the same location in a semantic feature space.

The difference in our context is that our task requires evaluating a model’s feature space

in a pixel-wise manner. This, therefore, requires us to compare the semantics between the

two crops in a pixel-wise manner. We devise the following method, described in Section 6.3.1

and Figure 6.1.

6.3.1 Method

Firstly, an unlabelled image x is randomly cropped with the corresponding transform T
G

1 ,

producing a global crop. This is then separately transformed by both T
L

1 or T L

2 giving two

crops, x̄ and x̄0. T
L

1 and T
L

2 are sampled such that one is always the identity transform,

while the other is a crop-and-resize transform. Different colour-space transforms, C1 and C2,

are then applied to each of these two crops. Intuitively, the result of these operations is to

give two crops, where one is a colour-transformed crop of the other, which has been resized

to match its spatial dimensions.

After this, two functions, f and g, segment each of the generated crops. Pixel-wise

109

Figure 6.1: A depiction of the crop-and-resize scheme used. Firstly, a global crop x̄ is ob-
tained with spatial dimensions (H, W), which are image spatial dimensions used for the
entirety of this chapter. Subsequently, a local crop x̄0 is obtained from within the global
crop with initial spatial dimensions (H 0

, W
0), before being bilinearly interpolated to (H, W).

In this way, we have two images of the same spatial dimensions representing two distinct
views of the instances contained within the region of x̄0, where x̄ contains significantly more
context than x̄0. x̄ = T

L

1 � T
G

1 (x) and x̄0 = T
L

2 � T
G

1 (x) if T L

1 and T
L

2 are sampled as the
identity and local crop-and-resize respectively.

aligned segmentations are then generated by applying the local crop-and-resize operation

that was not applied before, i.e.:

l0 = T
L

2 � f � C1 � T
L

1 � T
G

1 (x)

l = T
L

1 � g � C2 � T
L

2 � T
G

1 (x)

(6.6)

Logits l and l0 are pixel-wise aligned and, from this, the training objective is designed.

6.4 Training Architecture

Using the above data augmentation scheme, training entails comparing the segmentations of

two crops of the same image. In this scheme, we have described two segmentation functions

f and g that define two branches, each of which segments one of the crops. These functions

could represent the neural networks with the same architecture, however in this method

they do not. In this method, the branches are defined by the following, and described in

Figure 6.2 and Figure 6.3:

f(·) = f � E(·) (6.7)

110

Figure 6.2: Illustration of the architectures of the branches when training on target domain
images, and the context in which losses L

c and L
u are calculated. Networks are coloured in

aquamarine when the gradients w.r.t. the depicted losses for that forward pass are non-zero,
and in grey when no gradients are calculated.

v

Figure 6.3: Illustration of the architectures of the branches when training on source domain
images, and the context in which losses L

p and L
s are calculated. Gradient with respect to

the depicted losses are calculated for all networks, hence their colouring in aquamarine.

g(·) = g⇡ � g⇢ � E(·) (6.8)

Where E is an encoder, f is a segmentation head, g⇢ is a projection network and g⇡ rep-

resents prototype segmentation. The function g uses prototype segmentation in a way that

has been described in Section 6.2.1. The reason as to why f does not share the architecture

of g will be described in Section 6.5.4 with reference to the training objective.

111

6.5 Training Objective

Using the above mechanism, the method should train a model so that it can express uncer-

tainty accurately with M� , such that the model is either accurate and certain, or the model

is inaccurate and uncertain.

The first step in designing the training method is that we assume segmentation consis-

tency between two images that have been generated via crop-and-resize data augmentation,

is a good approximation of segmentation accuracy. In the context of this work: if we have

two pixels that correspond to the same location in the original image, and they have both

been segmented as the same class by two differently parameterised functions, then it is

highly likely that the class assignment is correct, otherwise it is probably not.

For two segmentations, {l, l0} 2 RH⇥W⇥K the consistency between these segmentations

can be represented by consistency mask Mc
2 {0, 1}H⇥W :

Mc
i
=

8
>><

>>:

1 argmax
k2K

(l0
i
) = argmax

k2K
(li)

0 otherwise
(6.9)

This method then relates the uncertainty maps M� and consistency maps Mc with a

procedure consisting of two steps:

1. � is solved for such that the number of certain pixels in M� is equal to the number of

consistent pixels in Mc. In this way, the rate of certainty is calibrated by the rate of

consistency, which is taken as an approximation of task difficulty and accuracy.

2. In a model training step, the consistency is maximised for the pixels that are certain

according to M� . As a result of this step, both Mc and M� become better estimators of

accuracy.

If every training iteration serves to improve Mc and M� as approximations of ground-

truth accuracy, then a positive feedback loop is established whereby high-quality uncer-

tainty estimation is learned. In order to fully achieve this feedback loop, a number of addi-

tional objectives are required, which are discussed in Section 6.5.4.

112

6.5.1 Calculating �

The threshold parameter � is calculated so that the number of certain pixels in M� is equal to

the number of consistent pixels in Mc, see Algorithm 1 for more detail. The approximation

being made in this work is that pixel-wise segmentation consistency is an estimate of pixel-

wise segmentation accuracy. However, the calculation of � relies on a looser version of this

approximation, that the mean consistency of a batch is an estimate of the mean accuracy of

a batch.

It is important that the value for � is appropriate given how it is used in the second step.

If the training objective maximises the consistency between too many pixels, then without

ground-truth to keep the segmentation network grounded, it will start to erroneously as-

sign a consistent class to pixels at the same location in the two crops, when they should be

uncertain. This is a problem, because an erroneous increase in mean consistency, leads to an

erroneous increase in mean certainty via �, and thus the proportion of pixels that are con-

sistent, certain and inaccurate increases. Once this begins to happen, it is difficult to undo

as this is a path to reducing the loss, even though it is a incorrect solution to the problem

from our perspective. This type of collapse is a common phenomenon in SSL. Therefore, it

is key that M� is certain about as few pixels that are consistent and inaccurate as possible,

and empirically, we find that this method of solving for � works effectively.

This is perhaps because, initially, the consistency between the segmentations is very low.

This therefore sets up a training dynamic where the certainty is also initially low, and con-

sistency is only maximised for the very most confident pixels. Therefore, as the objective

increases the consistency over time, it is less likely that pixels are consistent and inaccurate,

as the objective was initially very selective and conservative.

6.5.2 Learning E

The training of the encoder E should result in segmentations that are either certain and ac-

curate or uncertain and inaccurate. The objective seeks to achieve this by drawing on ideas

in learned loss attenuation (discussed in Section 3.4.1), and to provide two paths for the

network to decrease the loss. Either it can produce a consistent (and therefore high-quality)

segmentation or it can express uncertainty.

113

Algorithm 1 Algorithm to calculate �. Here, MaxST contains the largest classification scores
for each pixel, i.e. largest similarity with prototypes. As Mc is a binary mask of consistency,
and pc is its average, (1� pc) is the proportion of inconsistent pixels in the batch. Line 9 then
chooses � so that certain pixels have the same proportion as consistent.

1: Inputs:
2: Consistency mask: Mc

2 RN⇥H⇥W

3: Classification scores: ST 2 RN⇥K⇥H⇥W

4: function CALCULATE GAMMA(Mc
, ST)

5: MaxST = flatten(max(ST , dim="K"))
6: MaxST = sort(MaxST , ascending=True)
7: pc = mean(Mc) . % consistent pixels
8: R = (1� pc) ⇤N ⇤H ⇤W . Num. uncertain pixels
9: � = MaxST[int(R)]

10: return �

11: end function

The first step in calculating the loss is to compute the soft consistency between the two

segmentations. For two crops, x̄ and x̄0, generated with the data augmentation scheme dis-

cussed in Section 6.3.1, with pixels at locations i given by x̄ = x̄i and x̄
0 = x̄0

i
, the categorical

distributions for the ith pixel are given by p(y|x̄) and p(y|x̄0). Then, the soft consistency can

be calculated with the cross-entropy function as H[p(y|x̄), p(y|x̄0)].

The next step is to mask out regions of the loss, which the model estimates are likely to

be inconsistent, i.e. regions that are uncertain according to M� . The final loss is therefore

given by:

L
c =

P
NHW

i
M�

i
H[p(y|x̄0

T
), p(y|x̄T)]

P
NHW

j
M�

j

(6.10)

Where the soft consistency is minimised where the model is certainty (M�

i
= 1), and the loss

is attenuated where it is uncertain (M�

i
= 0).

Another important aspect of this loss, is that the p(y|x̄0
T
) is derived from f, which uses a

segmentation head, rather than prototype segmentation. As a result of this, the entropy of

p(y|x̄0
T
) is much lower than p(y|x̄T) due to its training with supervised cross-entropy L

s (dis-

cussed in Section 6.5.3), therefore this training objective also reduces the entropy of the latter.

As p(y|x̄T) is computed by calculating the cosine similarity between the source prototypes

and the target features, a decrease in its entropy relates to the target features being pulled

closer to its nearest neighbour prototype. This increases the separation between certain and

uncertain pixels because the entropy is only minimised for certain pixels, where M�

i
= 1.

114

6.5.3 Learning the Task

In addition to training the model to perform uncertainty estimation, we also need to train

the model to perform the task at hand, i.e. the accurate semantic segmentation of the source

domain. For this, the supervised cross-entropy loss L
s is used, which for a pixel xS = xS,i is

given by:

L
s
i
= �

X

k2K

y⇤
S,i,k log(p(y = k|xS)) (6.11)

Where y⇤
S,i 2 {0, 1}K is a one-hot ground-truth label for a pixel location i. This segmentation

is produced by the segmentation head, therefore this objective updates both the encoder E

and the segmentation head f , as illustrated in Figure 6.3.

6.5.4 Preventing Feature Collapse

If we were to optimise the model only using L
c, then it is likely that feature collapse will

occur, as the simplest solution that minimises L
c is one in which the model outputs the

same segmentation for any image, and across both branches. This happens in SSL when a

model loses sensitivity to the input, and produces a model output that satisfies the consis-

tency objective, while being independent of the input. A simple example of this for Siamese

networks is when the model produces the same feature vector for all possible images. In

our case, the model could produce the same segmentation for all target images, while seg-

menting the source domain accurately. This would result in consistent (and thus ultimately

confident) segmentations that are entirely inaccurate.

This problem is often discussed in SSL literature, such as in [143], [144], and can be solved

with both training objectives and architectural changes. This method leverages both.

Additional Objectives

When feature collapse occurs with prototype segmentation, all features are embedded on

top of a single or a few prototypes. Therefore, when it occurs there is a characteristic con-

centration of features in feature space. L
u is used to prevent this by softly constraining the

model to embed features uniformly on the unit hypersphere, proposed in [136].

For a batch of projected and downsampled features Z̃T 2 RN⇥F⇥hu⇥wu , the objective

115

maximises the pairwise distance between features using an RBF kernel:

L
u =

1

Nhuwu

X

i 6=j

e
�t||Z̃T,i�Z̃T,j ||22 (6.12)

Where (hu, wu) are the downsampled spatial dimensions of the features used in this loss.

After projection, the features are average pooled to a quarter of the resolution of the pro-

jected features, (hu, wu) = (h4 ,
w

4). This is done purely to reduce the memory usage incurred

in calculating pairwise distances between all features in a batch of size N . The RBF kernel

has a maximum value of 1 when Z̃T,i = Z̃T,j , and thus any non-zero distance is minimised

by the loss L
u.

L
u is only calculated on target images, and so to prevent additional failure modes, uni-

formity also needs to be encouraged on the source images. An observed failure mode occurs

where the prototypes are concentrated and the majority of the target features collapse onto

the prototypes (and are thus certain and minimise L
c). Meanwhile, the distance between the

certain and the smaller proportion of uncertain features are maximised, minimising L
u.

Uniformity for the source domain is implemented by maximising the distance between

the source prototypes, in the form found in [145]. To do this, the cosine similarity is com-

puted between each of the prototypes as ⇡
>
S
⇡S 2 RK⇥F

⇥ RF⇥K = RK⇥K . If I is the identity

matrix, then for (⇡>
S
⇡S � 2I), the largest possible value for the diagonal self-similarity terms

is�1. The maximum non-self pair-wise similarity can thus be calculated for each prototype,

for example:

max

2

66666666664

0

BBBB@

0.94 0.31 0.23

0.31 0.91 0.56

0.23 0.56 0.99

1

CCCCA

| {z }
⇡
>
S
⇡S

�

0

BBBB@

2 0 0

0 2 0

0 0 2

1

CCCCA

| {z }
2I

3

77777777775

= max

2

66664

0

BBBB@

�1.06 0.31 0.23

0.31 �1.09 0.56

0.23 0.56 �1.01

1

CCCCA

3

77775
=

0

BBBB@

0.31

0.56

0.56

1

CCCCA

These maximum pair-wise similarity are minimised, so that L
p is maximising the dis-

116

tance between nearest-neighbour prototypes. Formally, the loss is given by:

L
p =

1

K

KX

i=1

max
j2K

[⇡>
S
⇡S � 2I]ij (6.13)

Asymmetric Branches

A second way to prevent feature collapse is to parameterise the branches f and g differently,

e.g. [106], or define each with a different architecture, e.g. [107]. In this work, we do the

latter, as previously described in Section 6.4.

The branches share an encoder E, however each map the features to a segmentation map

differently. Therefore, for both models to produce an identical output and thereby maximise

consistency, the following needs to be true: f = g⇡ � g⇢. For this architecture, collapse is

not observed for the following possible reasons: (1) f and the prototypes used in g⇡ are

not updated by L
c, therefore are not encouraged to collapse, (2) g⇢ is updated with L

u in

addition to L
c.

6.6 Training Procedure

6.6.1 Model Pretraining

Each of the networks are pretrained by L
s and L

u before training with L
c. This means that

before training proper starts, the segmentation network f = f � E is trained to segment the

source domain, and have some level of performance the in target domain. So long as the

network has not overfit, this is a good initialisation for segmenting the target domain, and

helps to speed up convergence.

In addition to this the projection network has only been updated with L
u, and so has

very successfully maximised the uniformity, and thus ultimately the inconsistency between

branches f and g. This initially makes it more difficult for the networks to maximise con-

sistency, and thus makes it less likely that corresponding pixels at a given location are con-

sistent and inaccurate. This helps to maintain the assumption that consistency is a good

approximation of ground truth accuracy, and benefits the positive feedback loop, the impor-

tance of which we stressed in Section 6.5.1.

117

6.6.2 Domain-based Curriculae

Each target domain provides a set of unlabelled training images, and so we end up with a

trained model for each target domain. Testing primarily occurs in the labelled test dataset

from that same target domain.

However, we also perform experiments where a model is trained on multiple unlabelled

target datasets. These experiments are based on the assumption (and ultimately the em-

pirical observation) that it is more difficult to learn to perform uncertainty estimation if the

target domain is significantly shifted from the source domain. Therefore, our solution to this

is to first train a model on a target domain that is more similar to the source domain, but is

still similar to the target domain of interest. By splitting training into two steps from source

! to intermediate target ! final target, we reduce the effective size of the distributional

shift for each training step.

This is related to the motivations in curriculum learning, where it is shown that increas-

ing the difficulty throughout training results in a more performant model. In this work, the

difficulty of any given training example is defined in a very coarse manner, i.e. just by the ge-

ographic domain it comes from. Nonetheless, it would be possible to use more fine-grained

and possibly image-wise metrics to describe the difficulty of training examples.

As previously discussed, we are interested in training a model that is performant in the

robot’s ODD, and can detect when it has left it. This ODD is defined by the labelled source

domain dataset, which has a set of operating conditions, e.g. sunny/overcast, day/night,

rainy/dry, summer/winter. Therefore what is out of this ODD and thus OoD is defined as

the negative of any one of these choices. We can therefore imagine that a clear definition

of a ODD makes it fairly clear how to design a curriculum. The easiest examples are when

most of the operating conditions are the same, and the most difficult are when they are all

different.

For this reason, we argue that designing and training with a curriculum is simple, and

just requires access to a data collection platform (e.g. the deployment robot) to collect data

(which requires no annotation) when these conditions occur.

118

6.7 Network Architecture

The segmentation network used in this method has the DeepLabV3+ [140] architecture,

which comprises of a ResNet [35] encoder and a ASPP decoder. We used as ResNet-18

encoder as it is the smallest commonly used ResNet, and we are ultimately interested in de-

ploying such a segmentation network on a mobile robot, therefore low latency and memory

usage are very important. This also has the additional benefit of reducing the memory usage

during our experimentation, allowing for more experiments to be run in parallel, and thus

speeding up development.

In the implementation used1, there is also a segmentation head that maps from the output

of the ASPP module to the segmentation maps. In this method the features used ẑ come

from the output of the ASPP, i.e. those before the final layer, such that the encoder actually

comprises both the ResNet and the ASPP layer:

E = ASPP � ResNet : R3⇥H⇥W
! RF⇥h⇥w

Where the spatial dimensions of the input are (H, W) = (256, 256), and the downsam-

pled dimensions are (h, w) = (H4 ,
W

4) = (64, 64), and the feature dimension F = 256.The

segmentation head is represented by f : RF⇥h⇥w
! RK⇥h⇥w. The features ẑ are projected

by projection network g⇢ yielding z of the same dimensionality as ẑ, and so the projection

network is given by g⇢ : RF⇥h⇥w
! RF⇥h⇥w. It is a two-layer MLP which is applied to each

pixel feature independently, such that before projected, a batch of N features is reshaped

as follows: RN⇥F⇥h⇥w
! RNhw⇥F and the MLP operates on each of the individual Nhw

features.

6.8 Baselines

It is important to consider the performance of related methods, to see how the results com-

pare and reason about where the improved performance comes from.

There are two high-level methods for how to detect segmentation error for distribution-
1DeepLabV3+ implementation found here: https://github.com/qubvel/segmentation_models.

pytorch

119

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch

ally shifted images: epistemic uncertainty estimation methods (shortened to epistemic meth-

ods) and representation learning based methods (i.e. representation methods). The former

investigates the distribution of model parameters in order to quantify when the learned pa-

rameters are inadequate for the task at hand as discussed in Section 3.3.2. The latter hypothe-

size that a model’s learned representation ought to have learned to represent the differences

between the source images and any other image, therefore this distance in feature space

likely correlates with the likelihood of error and thus is a useful measure of uncertainty,

discussed in Section 3.5.

Epistemic Baselines

The epistemic methods considered in this work are Monte Carlo Dropout (referred to as MCD

in the results) and Deep Ensembles (referred to as Ens). We use two measures of uncertainty:

the predictive entropy (PE) and the mutual information (MI). The architecture used for the

Monte Carlo Dropout baseline is based on Bayesian DeepLab [146], which is then adapted

for the ResNet-18 used in this work. We test over a range of possible dropout probabilities

and number of samples, and conclude that 0.2 and 8 work effectively. Additionally, for the

Deep Ensemble baseline, we consider ensembles of size 5 and 10.

As has been discussed, these baselines are not feasible to run in real-time on a mobile

robot, however we use the method in [69] to distil the distribution of segmentations from a

MCD network into a deterministic network, that can express uncertainty in a single forward

pass (known as MCD-DSL in the results).

Representation Baselines

The representation baselines considered are OoD detection methods and DUMs, discussed

in Section 3.5.1 and Section 3.5.2 respectively.

The OoD detection methods follow the following formula: train a network on the source

domain data, then leverage the learned representation by using an inference method that

calculates an OoD score that describes the difference between a given image and the source

dataset. Therefore, each of these methods uses the same segmentation network trained

in a supervised manner on the source domain. [91] simply calculates pmax (referred to as

120

Softmax). ODIN in [92] calculates pmax but with a tuned softmax temperature and ad-

versarially attacked images (referred to as SoftmaxA). The method in [93] computes the

Mahalanobis distance between a given image features and a multi-dimensional Gaussian

fitted to the mean source domain features (referred to as FeatDist), which can also lever-

age adversarially attacked images (referred to as FeatDistA). Finally, ViM proposed in [94]

computes a score based on both the extracted features and the logits.

For a direct comparison, the methods that use features use the same feature space is used

as in our proposed method, described in Section 6.7. For the methods using adversarially

attacked images, a range of ✏ are tried, and results are presented for the best performing

value.

As for the DUMs, we use the simple but effective method proposed in [103], which cal-

culates a post-hoc GMM with a mixture component for each class. The implementation for

the spectral normalised network is based on [147]2.

Our Proposed Models

The models trained with the method proposed in this chapter are referred to as �-SSL and

�-SSLiL. The latter is trained according to the curriculum suggested in Section 6.6.2, and the

intermediate domain used is SAX London (hence the subscript iL referring to init London).

6.9 Evaluating uncertainty estimation on narrow target do-

mains

With results found in Section 6.9.1, the first set of experiments train our proposed models

with the labelled training dataset from Cityscapes and unlabelled training dataset from one

of the SAX domains. These models are then evaluated with the test dataset from the same

SAX domain as the unlabelled training dataset. The aim of this is to evaluate how the pro-

posed method is able to detect error due to a specific type of distributional shift, by using

training data that contains instances of this specific type of shift.

The experiments are repeated with KITTI and BDD as the distributionally shifted tar-
2Implementation found at https://github.com/jhjacobsen/invertible-resnet

121

https://github.com/jhjacobsen/invertible-resnet

get domains, with results found in Section 6.9.3. Additionally, experiments with the SAX

domains as the target domains are also performed with BDD providing the labelled source

training dataset, with results in Section 6.9.4.

6.9.1 Source: Cityscapes, Target: SAX Test Datasets

Target: SAX London

Looking at Figure 6.4, the �-SSL model performs best in each plot for SAX London. Its

precision is higher for all values of recall, which relate to increases of 19 % and 8 % over the

next best baseline for AUROC and AUPR respectively (more detail found in Table 6.3 and

Table 6.2). �-SSL also returns the highest MaxAMD and MaxF1/2 scores, with corresponding

values of p(a, c) that are higher than all but MCD0.2.

MCD0.2 generally is the best baseline, returning the highest AUROC, AUPR, MaxAMD and

MaxF1/2 scores of the baselines. For this baseline, MI instead of PE was on the whole more

performant. It is worth noting that the MCD0.2 models also have higher segmentation ac-

curacies, presumably owing to the dropout layers providing effective regularisation during

training, leading to better generalisation than a standard segmentation network.

The quality of uncertainty estimation for the epistemic and representation methods was

fairly similar according to AUROC and AUPR. When looking at MaxAMD and MaxF1/2

scores, these were also quite similar between the two method types, however the values

of p(a, c) at which the scores occur for representation methods is lower on average.

The �-SSLiL models don’t exist for this dataset configuration as for this SAX London as

the target domain, they are the same models as �-SSL.

Target: SAX New Forest

In terms of AUROC and AUPR, the �-SSL and �-SSLiL models produce similar results,

with the �-SSLiL models better on the margins (AUPR of 0.942 vs. 0.921). Similarly for the

MaxAMD and MaxF1/2 scores the �-SSLiL models are slightly better with increases of 2.4 %

and 3.5 % respectively. Underlying these metrics, there is however a large difference as the

values of p(a, c) at which the �-SSLiL scores are reported are far larger, with increases of

25.9 % and 30.7 % over �-SSL. For this reason, the �-SSLiL are much more useful, which

122

is not something that AUROC or AUPR capture, thereby demonstrating the importance of

presenting the results as we do. Part of the reason for this is that the curriculum learning

has improved the segmentation accuracy for this domain.

The MCD0.2 models have lower AUROC and AUPR than �-SSL models, and slightly

lower MaxAMD and MaxF1/2 scores. However, the latter is tarnished by the fact that the

scores for �-SSL are for values of p(a, c) that are 22 % lower. In order to pick between MCD0.2

and �-SSL, it is therefore important to weigh up ‘usefulness’ versus ‘safety’.

The same cannot be said for the �-SSLiL model, which has significantly better MaxAMD

and MaxF1/2 scores with increases of 9.0 % and 7.3 % respectively for minor changes in p(a, c)

of �2.7 % and 1.7 % compared with MCD-MI0.2.

No different to SAX London, the MCD0.2 models perform the best out of the baselines.

Again the epistemic methods were better than the representation methods, with higher

AUROC and AUPR, and similar values of MaxAMD and MaxF1/2 but at higher values of

p(a, c).

Target: SAX Scotland

The key finding in this domain is that the increase in performance from �-SSL to �-SSLiL

is at its greatest. The �-SSLiL far exceeds the quality of uncertainty estimation of the other

models, as easily seen in Figure 6.4. For the MaxAMD@p(a, c) and MaxF0.5@p(a, c) metrics,

the increases over the next best baseline is as follows: 9.1 % @ 65.8 %, 20.2 % @ 72.1 %. Similar

to the New Forest, but much more pronounced, is the large increase in the quality of both

segmentation accuracy and the uncertainty estimation as a result of the curriculum learning.

As for �-SSL, its results are similar to the best baseline MCD0.2. It is clear that the ex-

tremely large distributional shift causes a significant challenge to the semi-supervised task

– perhaps demonstrated by the difference between �-SSL and �-SSLiL.

As a result of the distributional shift, the epistemic methods are better than the repre-

sentation methods by the largest margin out of the domains. Quantitatively, this is repre-

sented by the increase in AUPR of 34.8 %. It is clear that a representation solely learned

on Cityscapes is not appropriate to perform OoD detection in a domain as distributionally

shifted as SAX Scotland.

123

6.9.2 Effect of distributional shift

For the SAX domains, the order of increasing distributional shift to Cityscapes is: London,

New Forest, Scotland. Qualitatively, this was thought to be true, which is backed up quan-

titatively by the decreasing segmentation quality of a segmentation network trained on

Cityscapes only, with segmentation accuracies being: 0.571, 0.538, 0.394 for London, New

Forest and Scotland respectively. We investigate the changes in the quality of uncertainty

estimation for each model as a function of distributional shift in Table 6.1. The AUROC and

AUPR are presented as they are independent of the segmentation accuracy of each method,

which decreases as the distributional shift increases. Thus, it is expected that these metrics

should not change as distributional shift increases.

We are particularly interested in how the quality of uncertainty estimation degrades for

the type of method: epistemic and representation, and comparing that to our proposed

methods.

Table 6.1: AUROC and AUPR Percentage Change at Increasing Distributional Shift, %�ROC
and %�PR Respectively

LDN! NF NF! SCOT
Method %�ROC %�PR %�ROC %�PR

Ep
is

te
m

ic

Ens-PE5 2.3 2.7 -2.5 -9.6
Ens-MI5 11.1 11.2 -13.0 -22.7
Ens-PE10 4.2 2.0 -3.2 -12.4
Ens-MI10 13.7 12.8 -16.3 -26.3
MCD-PE0.2 1.8 0.9 -0.6 -14.2
MCD-MI0.2 2.6 1.3 -6.4 -16.4
MCD-DSL 6.5 4.2 -8.9 -26.4
– Mean – 6.0 5.0 -7.3 -18.3

R
ep

re
se

nt
at

io
n Softmax -5.1 -11.2 -1.8 -16.8

SoftmaxA -5.1 -11.2 -1.9 -17.0
FeatDist -2.3 -6.1 0.3 -22.1
FeatDistA -0.4 -3.1 -9.0 -34.8

ViM 10.3 0.5 -8.5 -29.2
DUM 16.9 -1.4 -9.7 -43.6

– Mean – 2.4 -5.4 -5.1 -27.3

O
ur

s �-SSL -1.7 -3.0 -11.8 -21.2
�-SSLiL -1.7 -0.7 -2.4 -5.8

A negative value represents a decrease in misclassification detection performance as distributional
shift increases.

124

Epistemic Methods

Considering the shift from London to New Forest, the AUROC and AUPR increase by 6.0 %

and 5.0 % respectively. As epistemic methods are designed specifically to detect epistemic

uncertainty, this could be a result of an increase in pixels that are wrong as a result of epis-

temic uncertainty, e.g. by not having trained on the right training dataset. This, however,

does not happen when the distributional shift increases further, in the shift from New Forest

to Scotland. For this shift, the AUROC and AUPR decrease for every method, and for some

very significantly, leading average decreases of 7.3 % and 18.3 % respectively.

The conclusion from this is that, as the proportion of pixels that are incorrect as a result

of distributional shift increases, there might be some immediate benefits to uncertainty es-

timation quality. However, ultimately, distributional shift can increase to a magnitude that

can greatly reduce the quality of the detection of these errors, which is a concern.

Representation Methods

On average, methods that rely on leveraging the representation learned on a labelled dataset

tend to produce uncertainty estimates that are less robust to distributional shift. This is

demonstrated quantitatively by the decrease in AUPR of 5.4 % and 27.3 % for the two shifts

considered. Considering AUROC, the change was less clear, however the majority of rep-

resentation methods decreased in AUROC across both shifts. MaxAMD, MaxF1/2, and the

p(a, c) at which these scores occur also greatly reduce in the shift from New Forest to Scot-

land, meaning that both the segmentation quality has decreased, but also the ability for the

model to delineate between the accurate and inaccurate pixels has degraded.

These quantitative results demonstrate that relying on the task-specific representation

of these pretrained segmentation networks leads to increasingly poor misclassification de-

tection as the magnitude of the distributional shift increases. This justifies the focus on

methods, such as ours in this chapter, that use additional data to learn a more task-agnostic

representation to prevent this severe degradation.

125

�-SSL Methods

Similar to the representation methods, the �-SSL and �-SSLiL methods decrease in uncer-

tainty estimation quality for both AUROC and AUPR and both shifts. Considering only

�-SSL to begin with, the metrics are inconclusive about the robustness of uncertainty esti-

mation to shifts, with the representation methods being preferable for AUROC and �-SSL

being preferable for AUPR.

However this cannot be said for �-SSLiL, where the robustness to distributional shift

between New Forest and Scotland for this method is significantly better than the epistemic

and representation methods, and indeed the best of any individual method. This shows that

the curriculum approach massively the robustness of uncertainty estimation in a way that is

independent of the increases in segmentation accuracy that it also provides.

Clearly, the quantitative results show that this additional training on distributionally

shifted data greatly improves the representation by including the type of task-agnostic in-

formation required for misclassification detection.

6.9.3 Source: Cityscapes, Target: KITTI & BDD

In order to show that the proposed method is not overfit to the SAX datasets, we also use

KITTI and BDD as target domains. We can determine how distributionally shifted these

domains are from Cityscapes by considering the segmentation accuracy for a �-SSL model

on each of the test sets. The segmentation accuracies for KITTI, SAX London, BDD, SAX

New Forest are: 0.817, 0.703, 0.684, 0.595. This suggests that the ordering of increasing

segmentation accuracy is: KITTI, SAX London, BDD, SAX New Forest, SAX Scotland.

KITTI

�-SSL exceeds the uncertainty estimation quality of each of the baselines for AUROC, MaxAMD,

MaxF1/2, while the MCD-DSL methods has a better AUPR. The epistemic methods are better

on average for KITTI, and each epistemic method outperforms each representation method.

126

BDD

For each metric considered, �-SSL outperforms the baselines on BDD. Similar to KITTI, each

epistemic method has higher AUROC and AUPR than each representation method.

According to our analysis, SAX New Forest is more distributionally shifted than BDD,

however the metrics for BDD are lower than for SAX New Forest. This is possible because

BDD is significantly more diverse than SAX New Forest, which therefore makes learning

uncertainty estimation more of a challenge.

Table 6.2: Misclassification Detection AUROC with Source: Cityscapes

AUROC
Method LDN NF SCOT KITTI BDD

Ep
is

te
m

ic

Ens-PE5 0.630 0.645 0.629 0.845 0.758
Ens-MI5 0.551 0.612 0.532 0.705 0.696
Ens-PE10 0.603 0.629 0.608 0.828 0.755
Ens-MI10 0.554 0.629 0.527 0.690 0.713
MCD-PE0.2 0.727 0.739 0.735 0.864 0.801
MCD-MI0.2 0.755 0.774 0.725 0.815 0.801
MCD-DSL 0.697 0.742 0.676 0.855 0.761
– Mean – 0.645 0.681 0.633 0.800 0.755

R
ep

re
se

nt
at

io
n Softmax 0.723 0.686 0.674 0.785 0.706

SoftmaxA 0.722 0.685 0.672 0.784 0.705
FeatDist 0.62 0.605 0.607 0.575 0.641
FeatDistA 0.645 0.642 0.585 0.585 0.648

ViM 0.635 0.700 0.640 0.714 0.745
DUM 0.483 0.565 0.510 0.501 0.502

– Mean – 0.638 0.647 0.615 0.657 0.658

O
ur

s �-SSL 0.895 0.880 0.776 0.888 0.835
�-SSLiL - 0.880 0.859 - -

Table 6.3: Misclassification Detection AUPR with Source: Cityscapes

AUPR
Method LDN NF SCOT KITTI BDD

Ep
is

te
m

ic

Ens-PE5 0.714 0.733 0.663 0.956 0.854
Ens-MI5 0.663 0.737 0.570 0.910 0.830
Ens-PE10 0.710 0.724 0.634 0.952 0.857
Ens-MI10 0.667 0.752 0.554 0.905 0.840
MCD-PE0.2 0.851 0.859 0.737 0.926 0.816
MCD-MI0.2 0.878 0.889 0.744 0.956 0.904
MCD-DSL 0.785 0.818 0.602 0.957 0.851
– Mean – 0.753 0.787 0.643 0.937 0.850

R
ep

re
se

nt
at

io
n Softmax 0.711 0.631 0.525 0.840 0.686

SoftmaxA 0.711 0.631 0.524 0.840 0.686
FeatDist 0.693 0.650 0.507 0.660 0.718
FeatDistA 0.721 0.699 0.456 0.637 0.727

ViM 0.705 0.708 0.502 0.800 0.797
DUM 0.630 0.622 0.350 0.367 0.319

– Mean – 0.695 0.657 0.477 0.691 0.656

O
ur

s �-SSL 0.949 0.921 0.726 0.951 0.911
�-SSLiL - 0.942 0.887 - -

127

Figure 6.4: For each SAX domain, a row of plots describes the misclassification detection
performance of a series of baselines and the proposed methods, �-SSL and �-SSLiL. AMD

and F1/2 (shown in the plots as F0.5) aggregate performance into a single metric, where a
larger value of each represents a more ‘introspective’ model. They are plotted versus p(a, c),
the proportion of pixels that are accurate and certain, as this represents the amount of ac-
curate and useful semantic information the model can extract from images; also a metric
maximised by the ideal model. Note that the maximum value of p(a, c) is equal to the seg-
mentation accuracy, max[p(a, c)] = p(accurate).

6.9.4 Source: BDD, Target: SAX Test Datasets

We also train our methods and the baselines on the labelled dataset from BDD. This is to

help up investigate the generality of each of the approaches, and to see how a different

source domains affects uncertainty estimation.

128

Table 6.4: Maximum AMD and p(a, c) with Source: Cityscapes

MaxAMD @ p(a, c)
Method LDN NF SCOT KITTI BDD

Ep
is

te
m

ic

Ens-PE5 0.679 @ 0.560 0.652 @ 0.581 0.634 @ 0.175 0.818 @ 0.751 0.734 @ 0.607
Ens-MI5 0.645 @ 0.620 0.643 @ 0.613 0.580 @ 0.076 0.798 @ 0.797 0.692 @ 0.668
Ens-PE10 0.678 @ 0.582 0.653 @ 0.564 0.622 @ 0.142 0.812 @ 0.768 0.728 @ 0.602
Ens-MI10 0.654 @ 0.622 0.650 @ 0.611 0.578 @ 0.079 0.798 @ 0.798 0.698 @ 0.624
MCD-PE0.2 0.750 @ 0.646 0.745 @ 0.645 0.679 @ 0.270 0.849 @ 0.792 0.765 @ 0.608
MCD-MI0.2 0.744 @ 0.640 0.748 @ 0.625 0.681 @ 0.234 0.833 @ 0.823 0.754 @ 0.607
MCD-DSL 0.708 @ 0.559 0.708 @ 0.503 0.685 @ 0.136 0.830 @ 0.745 0.738 @ 0.571
– Mean – 0.694 @ 0.604 0.686 @ 0.592 0.637 @ 0.159 0.795 @ 0.782 0.730 @ 0.612

R
ep

re
se

nt
at

io
n Softmax 0.689 @ 0.444 0.668 @ 0.396 0.657 @ 0.164 0.718 @ 0.434 0.692 @ 0.479

SoftmaxA 0.689 @ 0.446 0.668 @ 0.401 0.656 @ 0.167 0.717 @ 0.435 0.692 @ 0.480
FeatDist 0.594 @ 0.371 0.572 @ 0.334 0.624 @ 0.055 0.588 @ 0.574 0.620 @ 0.489
FeatDistA 0.617 @ 0.449 0.603 @ 0.378 0.636 @ 0.032 0.564 @ 0.384 0.626 @ 0.502

ViM 0.626 @ 0.546 0.641 @ 0.353 0.617 @ 0.153 0.655 @ 0.386 0.687 @ 0.480
DUM 0.625 @ 0.625 0.618 @ 0.556 0.649 @ 0.000 0.733 @ 0.732 0.637 @ 0.635

– Mean – 0.640 @ 0.480 0.628 @ 0.403 0.640 @ 0.095 0.663 @ 0.491 0.659 @ 0.511

O
ur

s �-SSL 0.83 @ 0.625 0.796 @ 0.483 0.716 @ 0.260 0.856 @ 0.767 0.770 @ 0.568
�-SSLiL - 0.815 @ 0.608 0.781 @ 0.431 - -

Table 6.5: Maximum F1/2 Score and p(a, c) with Source: Cityscapes

MaxF1/2 @ p(a, c)
Method LDN NF SCOT KITTI BDD

Ep
is

te
m

ic

Ens-PE5 0.732 @ 0.520 0.708 @ 0.460 0.604 @ 0.206 0.889 @ 0.613 0.801 @ 0.496
Ens-MI5 0.694 @ 0.609 0.691 @ 0.605 0.528 @ 0.461 0.832 @ 0.795 0.758 @ 0.472
Ens-PE10 0.730 @ 0.539 0.707 @ 0.517 0.574 @ 0.168 0.880 @ 0.608 0.795 @ 0.492
Ens-MI10 0.702 @ 0.603 0.696 @ 0.597 0.522 @ 0.460 0.833 @ 0.761 0.767 @ 0.488
MCD-PE0.2 0.812 @ 0.584 0.813 @ 0.559 0.678 @ 0.248 0.914 @ 0.686 0.836 @ 0.530
MCD-MI0.2 0.816 @ 0.541 0.825 @ 0.523 0.687 @ 0.215 0.891 @ 0.669 0.836 @ 0.500
MCD-DSL 0.764 @ 0.499 0.770 @ 0.441 0.568 @ 0.155 0.900 @ 0.644 0.802 @ 0.491
– Mean – 0.750 @ 0.556 0.744 @ 0.529 0.594 @ 0.273 0.877 @ 0.682 0.799 @ 0.496

R
ep

re
se

nt
at

io
n Softmax 0.726 @ 0.395 0.687 @ 0.370 0.555 @ 0.205 0.777 @ 0.366 0.735 @ 0.429

SoftmaxA 0.726 @ 0.397 0.687 @ 0.373 0.554 @ 0.207 0.777 @ 0.366 0.735 @ 0.430
FeatDist 0.645 @ 0.371 0.601 @ 0.408 0.487 @ 0.240 0.640 @ 0.571 0.672 @ 0.434
FeatDistA 0.672 @ 0.360 0.643 @ 0.296 0.449 @ 0.240 0.612 @ 0.525 0.680 @ 0.428

ViM 0.658 @ 0.543 0.667 @ 0.326 0.520 @ 0.243 0.721 @ 0.324 0.735 @ 0.391
DUM 0.676 @ 0.625 0.664 @ 0.528 0.419 @ 0.315 0.774 @ 0.731 0.686 @ 0.635

– Mean – 0.684 @ 0.449 0.658 @ 0.384 0.497 @ 0.242 0.717 @ 0.481 0.707 @ 0.458

O
ur

s �-SSL 0.893 @ 0.548 0.855 @ 0.407 0.678 @ 0.239 0.920 @ 0.676 0.843 @ 0.475
�-SSLiL - 0.885 @ 0.532 0.826 @ 0.370 - -

Training the baselines on BDD increases the quality of uncertainty estimation for epis-

temic and representation methods according to each of the metrics. For the MaxF1/2 scores

of the baselines, the increase from Cityscapes to BDD for SAX London, SAX New Forest,

SAX Scotland are: 9.1 %, 14.6 %, 26.2 %. This corresponds with the fact that there is a smaller

distributional shift between BDD and SAX Scotland.

129

Target: SAX London

�-SSL has the highest quality uncertainty estimation out of all of the methods for this target

domain, characterised by a 6.5 % increase in MaxF1/2 over the next best score (held jointly by

Softmax, SoftmaxA and MCD-PE0.2).

In contrast to what is true for the baselines, the uncertainty estimation performance for

the �-SSL models are higher using Cityscapes as the source domain than BDD. The segmen-

tation accuracy for �-SSL is also higher for Cityscapes than for BDD, with 0.703 and 0.688

respectively.

Target: SAX New Forest

Contrary to SAX London, the segmentation accuracy for �-SSL using BDD as the source

domain is higher than that of using Cityscapes (0.666 and 0.595 respectively). This implies

smaller distributional shift between BDD and SAX New Forest than Cityscapes and SAX

New Forest.

�-SSL and �-SSLiL models outperform each of the baselines on all metrics apart from

AUPR. Unlike what is predicted according to the relative distributional shifts, the uncer-

tainty estimation performance of our models trained on BDD as source are not consistently

better than those trained on Cityscapes. This is perhaps again because of the significant di-

versity in BDD compared with Cityscapes. Therefore, the appearance and semantics of the

latter are more concisely described, making distributional uncertainty estimation easier.

Target: SAX Scotland

Using BDD as the source domain for �-SSL makes a significant positive change to the un-

certainty estimation performance over using Cityscapes. This is also true for �-SSLiL but to

a lesser extent. Looking at the segmentation accuracies with BDD and Cityscapes as source,

gives us 0.495 and 0.431 respectively. Therefore, as described above, BDD is closer to SAX

Scotland than Cityscapes, and this helps explain the benefit of using it in this case.

In this experiment, the epistemic methods are much better than the representation meth-

ods and perform comparably with �-SSLiL.

130

Conclusions

These experiments help us describe how uncertainty estimation performance changes de-

pending on which training dataset and test dataset considered. They show that our pro-

posed methods perform very favourably to the baselines, and are typically the best per-

forming method even when considering those methods that are too computationally heavy

to use for mobile robotics applications (namely the epistemic methods apart for MCD-DSL).

Table 6.6: Misclassification Detection AUROC and AUPR with Source: BDD

AUROC
Method LDN NF SCOT

Ep
is

te
m

ic

Ens-PE5 0.781 0.854 0.862
Ens-MI5 0.744 0.809 0.818
Ens-PE10 0.785 0.854 0.866
Ens-MI10 0.761 0.827 0.861
MCD-PE0.2 0.834 0.841 0.822
MCD-MI0.2 0.808 0.816 0.739
MCD-DSL 0.821 0.803 0.805
– Mean – 0.791 0.829 0.825

R
ep

re
se

nt
at

io
n Softmax 0.825 0.819 0.810

SoftmaxA 0.825 0.819 0.810
FeatDist 0.605 0.599 0.563
FeatDistA 0.625 0.631 0.598

ViM 0.663 0.664 0.560
DUM 0.480 0.431 0.398

– Mean – 0.671 0.661 0.623

O
ur

s �-SSL 0.889 0.876 0.833
�-SSLiL - 0.882 0.855

AUPR
Method LDN NF SCOT

Ep
is

te
m

ic

Ens-PE5 0.896 0.941 0.885
Ens-MI5 0.876 0.915 0.837
Ens-PE10 0.899 0.942 0.880
Ens-MI10 0.884 0.925 0.870
MCD-PE0.2 0.903 0.881 0.798
MCD-MI0.2 0.880 0.863 0.728
MCD-DSL 0.902 0.914 0.849
– Mean – 0.891 0.912 0.835

R
ep

re
se

nt
at

io
n Softmax 0.901 0.904 0.816

SoftmaxA 0.901 0.905 0.816
FeatDist 0.724 0.731 0.547
FeatDistA 0.758 0.770 0.604

ViM 0.799 0.797 0.547
DUM 0.549 0.530 0.321

– Mean – 0.772 0.773 0.608

O
ur

s �-SSL 0.936 0.935 0.858
�-SSLiL - 0.928 0.900

Table 6.7: Maximum AMD and p(a, c) with Source: BDD

MaxAMD @ p(a, c)
Method LDN NF SCOT

Ep
is

te
m

ic

Ens-PE5 0.739 @ 0.630 0.783 @ 0.621 0.790 @ 0.347
Ens-MI5 0.716 @ 0.623 0.766 @ 0.637 0.753 @ 0.343
Ens-PE10 0.741 @ 0.619 0.783 @ 0.627 0.792 @ 0.331
Ens-MI10 0.727 @ 0.619 0.774 @ 0.629 0.797 @ 0.351
MCD-PE0.2 0.753 @ 0.488 0.760 @ 0.390 0.766 @ 0.217
MCD-MI0.2 0.729 @ 0.454 0.742 @ 0.362 0.729 @ 0.176
MCD-DSL 0.756 @ 0.549 0.761 @ 0.638 0.727 @ 0.387
– Mean – 0.737 @ 0.569 0.767 @ 0.558 0.765 @ 0.307

R
ep

re
se

nt
at

io
n Softmax 0.761 @ 0.553 0.760 @ 0.573 0.755 @ 0.275

SoftmaxA 0.761 @ 0.554 0.761 @ 0.574 0.754 @ 0.275
FeatDist 0.673 @ 0.609 0.677 @ 0.674 0.603 @ 0.154
FeatDistA 0.706 @ 0.646 0.727 @ 0.668 0.590 @ 0.265

ViM 0.662 @ 0.662 0.683 @ 0.608 0.588 @ 0.114
DUM 0.562 @ 0.562 0.596 @ 0.596 0.604 @ 0.000

– Mean – 0.688 @ 0.598 0.701 @ 0.616 0.649 @ 0.181

O
ur

s �-SSL 0.818 @ 0.599 0.805 @ 0.567 0.762 @ 0.331
�-SSLiL - 0.809 @ 0.578 0.769 @ 0.417

131

Table 6.8: Maximum F1/2 Score and p(a, c) with Source: BDD

MaxF1/2 @ p(a, c)
Method LDN NF SCOT

Ep
is

te
m

ic

Ens-PE5 0.810 @ 0.488 0.872 @ 0.500 0.829 @ 0.307
Ens-MI5 0.792 @ 0.484 0.839 @ 0.528 0.777 @ 0.290
Ens-PE10 0.814 @ 0.488 0.872 @ 0.500 0.825 @ 0.284
Ens-MI10 0.802 @ 0.483 0.855 @ 0.519 0.815 @ 0.309
MCD-PE0.2 0.833 @ 0.403 0.814 @ 0.328 0.748 @ 0.199
MCD-MI0.2 0.820 @ 0.380 0.803 @ 0.311 0.685 @ 0.163
MCD-DSL 0.829 @ 0.460 0.839 @ 0.525 0.769 @ 0.319
– Mean – 0.814 @ 0.455 0.842 @ 0.459 0.778 @ 0.267

R
ep

re
se

nt
at

io
n Softmax 0.833 @ 0.465 0.835 @ 0.483 0.764 @ 0.241

SoftmaxA 0.833 @ 0.468 0.836 @ 0.484 0.764 @ 0.241
FeatDist 0.730 @ 0.564 0.731 @ 0.566 0.534 @ 0.191
FeatDistA 0.755 @ 0.614 0.778 @ 0.621 0.592 @ 0.285

ViM 0.732 @ 0.433 0.747 @ 0.541 0.511 @ 0.214
DUM 0.616 @ 0.562 0.648 @ 0.596 0.451 @ 0.396

– Mean – 0.750 @ 0.518 0.763 @ 0.549 0.603 @ 0.261

O
ur

s �-SSL 0.887 @ 0.515 0.873 @ 0.495 0.797 @ 0.284
�-SSLiL - 0.885 @ 0.501 0.831 @ 0.348

6.10 Evaluating uncertainty estimation on a general target

domain

As discussed in Section 6.1.1, we are interested in evaluating the extent to which using dis-

tributionally shifted driving images from one domain improves quality of uncertainty es-

timation for a wide range of driving domains, i.e. investigating the extent to which our

proposed models have generalised. This is achieved by training using labelled images from

Cityscapes with unlabelled images from each of the SAX domains, and then testing on the

WildDash dataset. The results for this are found in the next section.

6.10.1 Target: WildDash

In the preceding evaluations, �-SSL and �-SSLiL have been tested in domains for which the

model had access to unlabelled training images for that domain. In this experiment, each

of the baselines, �-SSL and �-SSLiL are tested in an entirely unseen and very challenging

domain, namely WildDash, [134] (see Section 4.3 for more detail).

This dataset is very challenging, but is a good way of testing the extent to which a

given model can perform general distributional uncertainty estimation. As discussed in

Section 6.1.1, we are interested in evaluating the extent to which using a specific distribution-

ally shifted driving dataset from one domain improves general distributional uncertainty

estimation, as well as for the domain of the unlabelled target training dataset.

132

The results for this can be found in Figure 6.5. It can be seen in this plot that �-SSLiL-

SCOT outperforms each of the baselines in terms of MaxAMD, MaxF1/2 and PR, with this

backed up by scores of AUROC and AUPR of 0.852 and 0.896 respectively compared with

scores of 0.803 and 0.868 for the best performing baseline, Ens-PE5.

The key thing to conclude from this experiment is that although the �-SSLiL models have

been trained to detect segmentation error in a specific target domain, the representation

learned from this generalises well to general driving datasets. Therefore, this suggests that

this method is a promising approach for mitigating segmentation error for driving datasets

generally, as was hypothesised in the discussion in Section 6.1.1.

Another aspect worth noting is that misclassification detection metrics when testing

�-SSLiL-SCOT on WildDash are lower than that of testing on SAX Scotland. This confirms

that, if possible, it is still better to leverage unlabelled images from the domain which could

be encountered during a deployment, as the highest quality uncertainty estimation can be

learned in this way.

Figure 6.5: Misclassification detection results on the WildDash Dataset [134]. �-SSL-LDN
refers to a �-SSL model trained on the SAX London unlabelled dataset, whereas �-SSLiL-
NF, �-SSLiL-SCOT refer to �-SSLiL models that are trained on the SAX New Forest and SAX
Scotland unlabelled datasets, while also using SAX London as part of a curriculum.

6.11 Miscellaneous experiments

In addition to the improvements in uncertainty estimation quality, we investigate a number

of other facets of our proposed method.

133

Firstly, the results in Section 6.11.1 show how the number of labelled validation images

used to calculate an optimal threshold affects the quality of uncertainty estimation. The

proposed method calculates a threshold during training, and this section shows that this

threshold provides similar uncertainty estimation quality, without the requirement for la-

belled validation images.

Secondly, the results in Section 6.11.2 show the extent to which the optimal threshold

calculated for one domain is optimal for testing on another domain. They show that there is

insignificant degradation in quality of uncertainty estimation due to using a threshold from

another domain.

Finally, Section 6.11.3 presents the latency of each of the baselines (described in Sec-

tion 6.8), and shows that our proposed models are significantly faster than high quality

alternatives.

6.11.1 Calculation of the optimal threshold

When considering the AMD and F1/2 scores, there is an obvious point at which these scores

are maximised (seen in Figure 6.4), which corresponds to an optimal threshold. This thresh-

old can be calculated with a set of labelled validation images from the domain of interest.

This requires using additional labelled validation images, and if this validation set is not

representative of the test set, the uncertainty estimation quality could be worse.

For this reason, we investigate the effect of the number of validation images on uncer-

tainty estimation quality for the �-SSL models. We do this by holding out a validation set

from the test images, and testing on these remaining images. This is done over 100 differ-

ence combinations of validation and test set for each size of validation set. Interestingly,

given that �-SSL also calculates a threshold during training, we can get a threshold without

using any validation images and this is also investigated. The mean and spread of the AMD

metric is shown as a box plot, Figure 6.6, for [0, 1, 5, 20] validation images.

Figure 6.6 shows that the AMD metrics are much more variable for small numbers of val-

idation images, as the validation set is less likely to represent the test set. It also shows

that there is no significant drop in uncertainty estimation performance by using 0 valida-

tion images versus using 20, which demonstrates a very useful characteristic of the �-SSL

134

Figure 6.6: Box plot representing the achieved AMD by calculating the uncertainty threshold
with varying numbers of validation examples for a �-SSL model. The dashed lines repre-
sent the values of AMD achieved when using the entire test dataset to calculate the optimal
threshold, before then testing on it.

method.

6.11.2 Calculating thresholds across domains

It is also important to look at the effect of using a threshold calculated to maximise uncer-

tainty estimation performance in one domain on the uncertainty estimation performance in

another domain. The concern would be that a threshold that is chosen on one domain, and

is therefore chosen for deployment, might be very sub-optimal for another domain, leading

to dangerously poor uncertainty estimation.

This is investigated for a given domain, by comparing the F1/2 at the optimal threshold to

the F1/2 score obtained using a threshold calculated from different domains. The results for

this can be found in Table 6.9. For each �-SSLiL model trained with unlabelled data its target

domain (e.g. �-SSLiL-LDN is trained using SAX London unlabelled images) we calculate the

F1/2 score using the optimal threshold for that given model in its target domain and report

the percentage change as �.

This table shows that there is only a very slight decrease in uncertainty estimation quality

as a result of using the threshold that is optimal for a different domain.

135

Table 6.9: Cross-Domain Threshold Testing Results

(a) �-SSLiL-LDN

MaxF1/2 F1/2 with �-LDN �
LDN 0.8930 0.8930 0%
NF 0.8827 0.8822 �0.058%

SCOT 0.7853 0.7839 �0.175%

(b) �-SSLiL-NF

MaxF1/2 F1/2 with �-NF �
LDN 0.8834 0.8832 �0.017%
NF 0.8849 0.8849 0%

SCOT 0.7952 0.7949 �0.038%

(c) �-SSLiL-SCOT

MaxF1/2 F1/2 with �-SCOT �
LDN 0.8768 0.8764 �0.038%
NF 0.8806 0.8805 �0.007%

SCOT 0.8257 0.8257 0%

6.11.3 Latency Evaluation

We have made the argument that the epistemic methods can provide high quality uncer-

tainty estimates, however are computationally very demanding. To prove this quantita-

tively, we have provided the frequency at which different methods can operate in Table 6.10.

We run the methods on two very different pieces of hardware, namely a NVIDIA V100 GPU

and the CPU on a MacBook Pro containing a M2 Pro CPU.

Table 6.10: Timing Results

Method GPU [Hz] CPU [Hz]
Vanilla 159.12 1.53

MCD 19.62 0.46
Ens-5LM 5.27 0.75
Ens-5HM 27.22 0.75
Ens-10LM 2.99 0.38
Ens-10HM 16.64 0.38

�-SSL 183.37 1.52

The Vanilla method is a DeepLabV3+ segmentation network and thus represents the

representation methods apart from DUM. The difference between Vanilla and �-SSL (which

is architecturally the same as �-SSLiL) is that the latter uses prototype segmentation rather

than a segmentation head. The definitions of MCD and Ens are the same as those in previous

experiments, where 8 samples are taken from the MCD model and the size of the ensemble is

136

shown in the method names.

For the ensemble methods, we use two different types of inference, denoted by the su-

perscript LM and HM. These stand for Low Memory and High Memory, where the former

only loads one member of the ensemble on the GPU at the same time, and the latter loads

each member onto the GPU then performs inference on the members sequentially. The LM

method is therefore slower but uses less memory compared with the HM method.

The key finding here is the confirmation that the epistemic methods have a significantly

lower frequency of operation, and therefore a higher latency. Our �-SSL models are the

same speed or faster than a standard segmentation network.

6.12 Qualitative Results

In Figure 6.7, we present test images from the SAX Test Datasets with an image from the

source domain, alongside their semantic segmentation over the known classes (middle) and

then segmentation into the known classes or uncertain (right).

As can be seen, the �-SSL model is trained to semantically segment the source domain

very accurately, however when presented with distributionally shifted images, the segmen-

tation quality begins degrade (middle). This is however mitigated by the �-SSL models by

expressing uncertainty over regions of the segmentation that are inaccurate. To describe a

few of the examples:

• In the first SAX London image, there is a street sign which is unfamiliar to a model

given the semantic definitions in Cityscapes

• In the second SAX New Forest image, there is a red telephone box, the appearance of

which would not be found in the German cities in which Cityscapes is collected, and

is not part of the known classes.

• In the first SAX Scotland image, there is a pile of wood, which is unlikely to be found

in a German city, and not one of the known classes.

By looking at the right column in Figure 6.7, each of these instances are detected and

assigned high uncertainty.

137

(a) Cityscapes

(b) London

(c) New Forest

(d) Scotland

Figure 6.7: Qualitative results for Cityscapes and the SAX domains. As the SAX RGB im-
ages (left) become more dissimilar from Cityscapes (from top to bottom), the corresponding
semantic segmentations (centre) decrease in quality. However, for these poorly segmented
regions, high uncertainty is largely expressed over them, shown in black (right).

138

6.13 Ablation Studies

In order to investigate the effect of each component of the proposed system, we perform a

series of ablation studies. From these experiments, we are able to confirm that the choices

made in the design of the system are beneficial.

6.13.1 Estimating Uncertainty via Distance to Prototypes

This experiment investigates to what extent does the �-SSL work as a result of the improve-

ment in the learned representation or the method for calculating uncertainty, i.e. by calcu-

lating the mean feature vector per class and computing the distance between the prototypes

and a given pixel-wise feature of a test image.

This investigation is implemented by training a network on the source domain alone,

and then calculating prototypes as we do in �-SSL. In this way, the representation being

used is the same as the representation baselines (apart from DUM) and so a direct comparison

over uncertainty estimation inference procedures can be made. The results for this ablated

method are under the name NoSSL, as it is �-SSL without performing the semi-supervised

learning on the unlabelled target images.

By comparing Table 6.11 to Table 6.2 and Table 6.3, we can see that this ablation outper-

forms the representation methods. This means that estimating uncertainty in this manner is

clearly a good method, and supports the assumption that calculating M� in the way that is

done is an important part of setting up the positive feedback loop.

However the key finding is that the performance of NoSSL is significantly worse than

�-SSL and �-SSLiL. This is important evidence that the training in these methods allow the

model to learn a representation that is more suited to performing uncertainty estimation.

6.13.2 Importance of target domain images

In the proposed method, we have performed a different type of training with a different

type of images. It is therefore worth determining if the benefits of the training method are

independent of the type of data used. In this experiment, we use Cityscapes images instead

of the unlabelled target domain images. The results for these are therefore under the name

139

Table 6.11: Misclassification Detection results over three metrics for the models trained with
ablated versions of the method proposed in this work.

AUROC AUPR
Method LDN NF SCOT LDN NF SCOT

A
bl

at
io

ns

NoSSL 0.803 0.774 0.72 0.872 0.829 0.686
NoSAX 0.793 0.771 0.669 0.824 0.794 0.455
M�=�1 0.805 0.761 0.711 0.9 0.827 0.646

SymParam 0.851 0.598 0.622 0.8 0.539 0.486
SymNonParam 0.643 0.643 0.621 0.382 0.235 0.165

NoRegL 0.815 0.827 0.72 0.882 0.847 0.621
MCD-SSL 0.776 0.81 0.705 0.794 0.857 0.592

O
ur

s �-SSL 0.895 0.88 0.776 0.949 0.921 0.726
�-SSLiL - 0.88 0.859 - 0.942 0.887

(a)

MaxAMD @ p(a, c)
Method LDN NF SCOT

A
bl

at
io

ns

NoSSL 0.727 @ 0.482 0.706 @ 0.424 0.680 @ 0.204
NoSAX 0.729 @ 0.465 0.717 @ 0.463 0.653 @ 0.003
M�=�1 0.754 @ 0.586 0.692 @ 0.426 0.685 @ 0.174

SymParam 0.790 @ 0.253 0.596 @ 0.368 0.756 @ 0.053
SymNonParam 0.752 @ 0.015 0.864 @ 0.000 0.902 @ 0.000

NoRegL 0.766 @ 0.552 0.748 @ 0.391 0.665 @ 0.201
MCD-SSL 0.747 @ 0.594 0.748 @ 0.482 0.707 @ 0.153

O
ur

s �-SSL 0.83 @ 0.625 0.796 @ 0.483 0.716 @ 0.260
�-SSLiL - 0.815 @ 0.608 0.781 @ 0.431

Struck through results are discounted as no pixels are confidently segmented.

(b)

MaxF1/2 @ p(a, c)
Method LDN NF SCOT

A
bl

at
io

ns

NoSSL 0.790 @ 0.380 0.753 @ 0.364 0.626 @ 0.203
NoSAX 0.769 @ 0.401 0.756 @ 0.403 0.505 @ 0.220
M�=�1 0.826 @ 0.492 0.746 @ 0.353 0.602 @ 0.184

SymParam 0.731 @ 0.219 0.608 @ 0.381 0.495 @ 0.057
SymNonParam 0.394 @ 0.088 0.281 @ 0.030 0.210 @ 0.017

NoRegL 0.806 @ 0.507 0.781 @ 0.332 0.569 @ 0.241
MCD-SSL 0.809 @ 0.518 0.804 @ 0.416 0.589 @ 0.159

O
ur

s �-SSL 0.893 @ 0.548 0.855 @ 0.407 0.678 @ 0.239
�-SSLiL - 0.885 @ 0.532 0.826 @ 0.370

(c)

140

NoSAX.

Looking at Table 6.11, it can be seen that the AUROC and AUPR of NoSAX are worse

than that of �-SSL. This makes it clear that using target domain images is important to

performing good uncertainty estimation. This puts into focus the importance of, not just

training algorithm, but the type of data in this method.

6.13.3 Importance of M� in the training objective

In Section 6.5, we make the point that is important to only maximise the consistency over

pixels that are likely to be accurate (approximated by those that are certain). In this exper-

iment, we question this and apply more standard semi-supervised learning in which we

maximise the consistency over all pixels. It can be argued that the semi-supervised learning

will improve the representation of the target domain, such that uncertainty estimation will

be improved, and thus it is not necessary to specialise the objective for uncertainty estima-

tion. This experiment is called M�=�1.

The results for this, seen in Table 6.11, show that quality of uncertainty estimation for

�-SSL is better than that of M�=�1. Therefore, we can conclude that there is benefit to spe-

cialising the objective specifically for uncertainty estimation.

6.13.4 Importance of Branch Asymmetry

In Section 6.5.4, we make the point that having two segmentation functions f and g that are

not the same helps to prevent feature collapse. To empirically investigate this, we use two

different methods: SymNonParam and SymParam. Both of these methods have symmetric

branches, but for the former, both branches use prototype segmentation (hence symmetric

non-parametric segmentation), while for the latter, they both use segmentation heads (hence

symmetric parametric segmentation).

In each method’s case, the same feature collapse nearly always occurs, where pixels are

segmented typically as one or two classes in a fixed pattern for all images, where one of these

classes is almost always road. The only exception to this is for SymNonParam on the SAX

New Forest dataset. The characteristics of this collapse is that the segmentation accuracy

becomes very poor, even while the AUROC and AUPR are reasonably good. So firstly, these

141

experiments provide us with evidence that having asymmetric branches helps to prevent

feature collapse, as can been seen in Table 6.11. Secondly, it gives a good illustration of how

important it is not just to look at AUROC and AUPR when evaluating a model, and that

incorporating p(a, c) into MaxF1/2 and MaxAMD is a useful way of doing this.

6.13.5 Importance of L
u and L

p

We presented the use of L
u and L

p as objectives to help prevent feature collapse and to

benefit uncertainty estimation. By removing these losses, we can investigate their effect, in

a method named NoRegL.

When using this method, as can be seen in Table 6.11, there is not a complete feature

collapse due to the presence of using branch asymmetry as well, but the quality of uncer-

tainty estimation is significantly reduced. This confirms for us the benefit of uniformity in

the representation for uncertainty estimation, and backs the hypothesis that this encourages

selectivity in which pixels can be near the prototypes and which cannot.

6.13.6 Importance of Crop-and-Resize Data Augmentation

The entirety of this method is designed using the foundation of crop-and-resize data aug-

mentation. The argument is made that we can investigate the limits of the segmentation

network’s knowledge by perturbing images in this way and looking at the resulting seg-

mentation performance, as performed in SSL.

Alternatively, as per the epistemic methods, it is also possible to consider the model

parameter distribution, by perturbing the model parameters instead of the training images.

Doing this, we can define a method that uses dropout instead of data augmentation, and

then compare segmentations produced by two perturbation of the model parameters. For

this method, the dropout probability of 0.2 is used as this was found to be optimal for the

baselines. This method is given the name MCD-SSL.

As seen in Table 6.11, this method does largely work, however it does not produce the

quality of uncertainty estimates as �-SSL does. This justifies the use of data augmentation

in order to induce the distribution of possible segmentations, which encodes distributional

uncertainty.

142

6.13.7 Importance of using hard M�

In the method, we make binarize the uncertainty estimations to get M�
2 {0, 1}H⇥W . We can

try and determine if this was a good design choice by investigating the alternative which is

to use soft M̃�
2 RH⇥W . To do this, we propose to calculate M̃� for a given pixel i in the

following way:

M̃�

i
= norm(max[softmax⌧ (li)]) 2 [0, 1] (6.14)

Where max[softmax⌧ (li)] is pmax, and norm(·) is a normalisation function. This normalisation

function is needed as the scaling of the uncertainty estimates is not in any way guaranteed

to be optimal for use in training. norm is chosen to normalise each M̃�
2 RH⇥W , such that

the minimum and maximum values are 0 and 1.

This experiment is performed using Cityscapes as the source domain and SAX London as

the target domain. When testing this model again on the SAX London domain, the MaxF1/2

score is 0.862 at a value of p(a, c) of 0.421, with a corresponding segmentation accuracy of

0.576. The corresponding �-SSL model with a binary M� has a MaxF1/2 score of 0.893 with a

p(a, c) of 0.548, and a segmentation accuracy of 0.70.

This shows that the quality of uncertainty estimation is worse using M̃� and the seg-

mentation quality even more significantly reduced. Therefore, the soft certainty mask adds

noise to the consistency task in a way that makes it much more difficult to learn a good

representation of the target domain.

6.13.8 Possibility of class-wise thresholds

In the �-SSL methods, we define a single value as the threshold for each of the class proto-

types. It can however be argued that it might be more optimal to have a different threshold

for each class prototype, as different classes are likely to be distributed differently, owing to

their different prevalence’s and appearance differences. For example, the road class is very

prevalent, and yet is almost always looks the same, and so you might expect it to be embed-

ded quite tightly. However a class such as traffic sign varies much more in appearance

and it corresponds to far fewer pixels in the training datasets, therefore you can imagine that

this class would have a much larger spread.

143

To investigate whether this is an important aspect of the problem to consider, we develop

a method that solves for a different threshold for each class. The thresholds for each class

are calculated such the per-class certainty [p�]k and per-class consistency [pc]k are equal, just

as in the above method.

[p�]k =
NHWX

i=1

[argmax(li) = k]�M�

iP
NHW

j=1 [argmax(lj) = k]
(6.15)

[pc]k =
NHWX

i=1

[argmax(li) = k]�Mc
iP

NHW

j=1 [argmax(lj) = k]
(6.16)

By equating these we can calculate the per-class thresholds � = [�1, �2, ...�K] 2 RK . Then

the certainty mask M� is calculated for every pixel i:

M�

i
= [max(li) > �k=argmax(li)] (6.17)

Using this described method, the uncertainty estimation quality was significantly worse

than for �-SSL with a single threshold. It reported a MaxF1/2 and p(a, c) of 0.772 @ 0.432

versus 0.893 @ 0.548 for �-SSL.

Therefore, using a class-wise threshold degrades the learning of good uncertainty esti-

mation, and so it is both easier and more performant to use a single threshold as in our

method.

6.13.9 The need for large batch sizes to calculate prototypes

In the �-SSL method, the prototypes are re-calculated at each iteration from a sampled batch

of labelled source images. Therefore, it is possible to argue that the �-SSL method is too

computationally demanding due to the need to have large batch sizes (and thus large GPU

memory usage) in order to prevent the prototypes from being too noisy.

The concerns for this problems are diminished by the fact that the batch size used in

training was 12, meaning that the training could fit on a single GPU with 12GB of vRAM.

We can however also consider how small the batch size can be in order to successfully learn

to perform uncertainty estimation, in order to investigate if the training would work with

less good hardware or scale to larger image sizes.

144

This method implements a scheme that prevents the issues associated with the limits

caused by calculating the prototypes at every training iteration. When sampling a batch of

labelled images, there is no guarantee that this batch contains pixels that are labelled with

every one of the known classes. Therefore, without counting for this, the model cannot

assign pixels in the target image to one of these left-out classes. To prevent this we use

a history of class prototypes, where if a class is not present in the source batch, then the

most recently calculated prototype for that class is used. This helps to prevent the problems

associated with the need for large batch sizes.

We perform an experiment to investigate this problem, where the number of images

used to calculate the prototypes is varied, however the batch size for the rest of the training

method is kept the same. Then during testing, the prototypes were calculated using the

entirety of the labelled source dataset, as was done in all previous testing. This allows us to

investigate the effect of smaller batch sizes for the prototypes on the learned representation.

In Table 6.12, we report the MaxF1/2 and p(a, c) metrics for a range of prototype batch sizes,

along with segmentation accuracy.

Table 6.12: Results for varying Training Prototype Batch Size on SAX London

Prototype Batch Size Use history? MaxF1/2 @ p(a, c) Segmentation Accuracy
12 Yes 0.893 @ 0.548 0.703
8 Yes 0.888 @ 0.559 0.719
6 Yes 0.892 @ 0.546 0.712
2 Yes 0.882 @ 0.518 0.693
2 No 0.827 @ 0.538 0.690

Table 6.12 shows that if we maintain a history of prototypes, then the quality of un-

certainty estimation and semantic segmentation does not significantly depend on the used

batch size. However when the history is not used, there is a significant hit to the quality of

uncertainty estimation. This is because, despite there being prototypes for the most preva-

lent classes, e.g. road, building and sky, and the segmentation accuracy can be mostly the

same, the model has prototypes which are vectors of zeros for the rest, therefore the categor-

ical distribution from which the uncertainty is calculated is significantly affected. However,

it is interesting that the uncertainty estimation quality does not completely degrade in this

setting, perhaps owing to the robustness of using cosine distance as a measure of uncer-

tainty.

145

6.14 Conclusion

This chapter has presented a method to perform distributional uncertainty estimation which

uses an unlabelled target domain training dataset, which contains instances that are in-

distribution, near-distribution and OoD within the same image. While challenging to work

with due to the lack of segmentation ground-truth, it promised to lead to higher-quality

distributional uncertainty estimation when compared with using a training dataset where

every image is significantly distributionally shifted from the source domain.

Empirically, it has been shown that this does indeed lead to high-quality distributional

uncertainty estimation. The significant challenge in this work became apparent when us-

ing an unlabelled target domain that was significantly shifted from source domain, namely

SAX Scotland. For this case, the quality of both segmentation and uncertainty estimation

degraded due to the large distributional shift. In this work, this was solved by using a cur-

riculum, and firstly training on a less distributionally shifted domain, namely SAX London.

Solving this problem is of great interest to us, because it is very important that quality of

uncertainty estimation does not degrade in the same manner as the quality of segmentation.

This problem will be further investigated in the next chapter, with a method that firstly uses

large-scale self-supervised training to learn a general feature representation, such that large

distributional shifts are not as damaging to learned uncertainty estimation.

146

Chapter 7

Learning Uncertainty Estimation with

Masking & Foundation Models

Contents

7.1 Foundation Models . 149

7.1.1 Preliminaries on Foundation Models 149

7.1.2 Foundation Models for Semantic Segmentation 149

7.1.3 Model Distillation . 151

7.2 Uncertainty Estimation for Foundation Models 152

7.3 Training Framework . 153

7.4 Uncertainty Training . 154

7.4.1 Learning Uncertainty Estimation . 155

7.4.2 Avoiding Feature Collapse . 158

7.5 Masked Image Modelling for Uncertainty Estimation 159

7.5.1 Background . 159

7.5.2 Motivation . 160

7.5.3 Masking Policy . 161

7.6 Experimental Setup . 162

7.6.1 Network Architecture . 162

7.6.2 Network Initialisation . 162

147

7.6.3 Data . 163

7.6.4 Baselines . 164

7.7 Experiments and Results . 165

7.7.1 Different Target Domains . 166

7.7.2 Freezing E . 167

7.7.3 Comparing perturbation methods . 168

7.7.4 Freezing f✓ . 169

7.8 Conclusion . 169

This chapter presents a method that builds on the ideas presented in both Chapter 5 and

Chapter 6. It considers the same problem setting of Chapter 6, where labelled images from

a source domain and unlabelled images from a distributionally shifted target domain are

used to train a model to perform uncertainty estimation. However, much like Chapter 5,

it also considers the use of large-scale image datasets for learning a general task-agnostic

representation.

The way in which these two approaches are combined is influenced by the recent advent

of foundation models in computer vision. These are neural networks that are trained on a

broad distribution of image data, in order to be capable of solving many different computer

vision tasks with minimal additional training.

This chapter investigates the way in which these models can be used to improve the

quality of distributional uncertainty estimation, and presents a training framework for this

in Section 7.3. The crucial final step in this framework is a method that we present in Sec-

tion 7.4, which trains a model to learn uncertainty estimation from unlabelled target domain

data using a Masked Image Modeling (MIM) task.

Experiments, described in Section 7.6, are performed in order to quantify the benefits

of using a foundation model for uncertainty estimation, and the additional improvements

seen when using our proposed method. The results for these experiments are presented in

Section 7.7.

This work was first presented in:

• D. Williams, M. Gadd, P. Newman, and D. De Martini, “Masked �-SSL: Learning Un-

certainty Estimation via Masked Image Modeling”, IEEE International Conference on

148

Robotics and Automation (ICRA), 2024.

7.1 Foundation Models

7.1.1 Preliminaries on Foundation Models

Foundation models are deep neural networks that are trained such that they can easily be

adapted to solve a wide range of downstream tasks on a broad distribution of data. In order

for this to be possible, they need to learn a general feature representation, i.e. they need

to extract salient information from a diverse set of data. In the case of computer vision,

foundation models need to be able to extract semantic and geometric information from any

given natural image.

Currently, the requirements for achieving this are: (1) a very large neural network must

be used, and (2) it must be trained on a very large and diverse dataset. As a result of the

second of these requirements and the cost of annotating data, self-supervised learning is

used to train these models, which has been discussed previously in Section 3.5.3, Chapter 5

and Chapter 6.

For computer vision, as well as other modalities, foundation models are based on the

transformer neural network architecture [37]. This architecture has been adapted from its

NLP origins for computer vision applications, with the primary change being to how the

input is tokenised. In architectures such as ViT [36] and its variants, an input image is

split into patches, which are each individually embedded. The patch embeddings are then

processed by the standard transformer self-attention blocks proposed in [37].

As a result, computer vision foundation models take the form of a transformer encoder,

which is represented by E : R3⇥H⇥W
! RF⇥Ĥ⇥Ŵ , where F is the length of the output features

and (Ĥ, Ŵ) are the spatial dimensions. Due to the patch tokenisation, (Ĥ, Ŵ) = (H
P

,
W

P
)

where P is the patch size.

7.1.2 Foundation Models for Semantic Segmentation

It is possible to apply these types of foundation models to a task without any adaptation

via non-parametric inference with the features, e.g. nearest-neighbour classification or pro-

149

totype segmentation (described in Section 6.2.1). However, in order to maximise the perfor-

mance on a given task, the parameterisation of the model is typically changed in some way.

A simple example of this is the addition of a linear layer on top of the model for classifica-

tion, which outperforms nearest-neighbour classification on ImageNet, as seen in [31], [32],

[106].

A number of different methods can be used to adapt a transformer encoder for semantic

segmentation. The simplest is to freeze the parameters of the encoder, and train a segmen-

tation decoder on top with a pixel-wise labelled dataset. Many different segmentation de-

coders have been proposed to do this, using both convolutional neural network (CNN) and

transformer blocks, e.g. [38]–[40], [148].

The above approach changes only how the features z, where z = E(x), are processed into

segmentations, z ! y. Alternatively, the encoder itself can be adapted in a number of dif-

ferent ways. Firstly, the encoder can be fine-tuned with straightforward supervised learning

along with the decoder to solve a specific task. This, however, incurs a large training cost

for very large neural networks and so parameter-efficient fine-tuning (PEFT) methods, such

as LoRA [149], can be used.

LoRA leaves the original encoder parameters unchanged, but modifies the forward pass

by adding trainable low-rank weight matrices �✓, such that for the i
th layer Ei of the encoder

E, Ei(x) = ✓ix + [�✓]ix. Crucially, for ✓i 2 Rd⇥k, these additional low-rank weight matrices

are composed as �✓i = BA, where B 2 Rd⇥r
, A 2 Rr⇥k and r is small, e.g. r = 8. This

means that a small number of additional parameters need to be trained, leading to (1) lower

training cost, (2) no inference cost as ✓ and �✓ can be combined, and (3) lower storage costs

as a model can be fine-tuned for a range of tasks with the only difference between these task

models being the addition of a small number of parameters, which are trivial to store.

A related approach to this is to augment the encoder architecture by adding additional

parameterised layers, such as in the adapter methods [150], [151]. Along with the decoder,

these layers are only trained with task-specific supervised learning.

The method in this chapter uses a segmentation decoder of the form found in Mask2Former

[148]. As will be discussed in Section 7.6, we perform experiments both with and without en-

coder fine-tuning, in order to investigate how this affects uncertainty estimation (discussed

150

further in Section 7.2).

7.1.3 Model Distillation

The methods discussed in Section 7.1.2 adapt the model to maximise its performance on a

specific task. Another reason to adapt the model is to reduce its size. Foundation models

are very large, and so incur a significant cost at inference time, which may be too great for

deployment on a mobile robot. As a result, it may be necessary to distill the representation

learned in the large foundation model into a model with fewer parameters.

Knowledge distillation, presented in [152], is a method that improves the supervised

training of a small model (named the student) by approximating the output of a larger, more

accurate pretrained model (named the teacher). More specifically, soft pseudo-labels are gen-

erated by the teacher model by applying a softmax function with a high temperature to the

logits, which are used to train the student alongside the supervised training. A similar ap-

proach is seen in [153], where the supervised distillation task is tailored to the transformer

architecture.

This idea is also applied to self-supervised learning, where, much like in supervised

learning, smaller models perform less well in training and testing. In [154], a self-supervised

method for distilling the representation of a large self-supervised model into a small model

is presented. A similar method is presented in DINOv2 [31], where a ViT-Giant with 1

billion parameters is distilled into a smaller ViT-Small model with 22 million parameters.

This distillation method was shown in [154] and [31] to be significantly more effective than

performing SSL training from a random initialisation.

In this chapter, we are interested in training a model that has a low inference cost, while

also benefitting from recently published foundation models. For this reason, we use the

distilled ViT-Small presented in DINOv2. This is important, as it allows us to investigate the

use of a model that is very general, but that is not prohibitively large for a mobile robotics

context.

151

7.2 Uncertainty Estimation for Foundation Models

This thesis is interested in mitigating distributional shift and, as such, we must consider the

impact of recent foundation models on this.

There are two key considerations: (1) the extent to which fine-tuning a foundation model

degrades its generalisation ability, and (2) the extent to which foundation models can help

improve distributional uncertainty estimation as a result of their general representation.

As discussed in Section 7.1.2, in order to solve specific segmentation tasks, foundation

models need to be fine-tuned with a labelled training dataset. In doing this, the model

is optimised on what is likely to be a relatively small dataset1, and therefore the span of

data over which the model is optimal is likely to shrink as a result of fine-tuning (see the

discussion in Section 2.2). This means that, although the original foundation model may

not suffer greatly from distributional shift, the resultant fine-tuned model will suffer to a

greater extent. This is shown in [155], where, as a model is fine-tuned on one dataset, the

classification accuracy decreases substantially for seven different datasets.

Additionally, given the arguments made in Section 2.3.3 and Section 3.5.1 that neural net-

works typically cannot detect decreases in accuracy, and that supervised training does not

promote task-agnostic representations, it is also likely that the quality of the model’s uncer-

tainty estimates will decrease. Experiments described in Section 7.6, with results presented

in Section 7.7, investigate whether this is empirically true.

As for the second consideration, given that foundation models are trained in such a way

as to learn task-agnostic information from diverse data, they also hold promise for being

very good at distributional uncertainty estimation. This has been previously discussed in

Section 3.5.2 and Section 3.5.3 in the context of OoD detection, and then further in Chapter 5

and Chapter 6.

We present a training framework in Section 7.3, and a method in Section 7.4, that address

these considerations in order to train a semantic segmentation model which performs high-

quality distributional uncertainty estimation.
1Certainly small relative to the pretraining dataset owing to the cost of annotation.

152

7.3 Training Framework

We propose a three-step framework that yields a foundation model fine-tuned for the se-

mantic segmentation of a given domain, that also produces high-quality distributional un-

certainty estimates.

The steps are (1) Pretraining, (2) Task Learning, (3) Uncertainty Training. The details of

these steps will now be discussed, with an illustration of each found in Figure 7.1.

Figure 7.1: A illustration of the three training steps of encoders E and decoders D, where the
subscript denotes their parameterisation. Firstly, an encoder is trained to produce a good
feature representation of a diverse set of natural images. This encoder forms the initialisation
of steps 2 and 3, where the encoder is fine-tuned, and a decoder is trained from scratch. Each
E and D are architecturally the same, but parameterised differently.

(1) Pretraining

This step trains an encoder EFM from scratch such that it can encode salient semantic and

geometric information from a broad distribution of natural images, i.e. it trains a founda-

tion model. As discussed in Section 7.1.3, if the deployment scenario necessitates a smaller

model, this step can also involve distilling the learned representation into a smaller model.

The resultant encoder EFM will be used to initialise the models that are trained in the next two

steps, such that each can benefit from this general representation.

153

(2) Task Learning

In this step, a segmentation network is defined with the foundation model encoder EFM, and

a randomly initialised decoder Drand. This segmentation network will be trained to perform

a task of interest, resulting in the network f✓ = D✓ � E✓.

In this work, the task is semantic segmentation of the source domain, which is achieved

with the corresponding source domain labelled training dataset. Note that by ‘task’, we

mean both whether we are considering image classification, depth regression, semantic seg-

mentation etc., but also the domain of data being used. In order to maximise the task per-

formance, i.e. maximising the quality of semantic segmentations on the source domain, the

encoder is also fine-tuned, hence the transform from EFM ! E✓.

(3) Uncertainty Training

For this step, we propose a novel method, which is described in more detail in Section 7.4.

After the network f✓ has been trained to maximise its segmentation performance on the

source domain, it is frozen.

Due to the task-specific training in the second step, the representation of f✓ will be

less task-agnostic, resulting in poorer quality segmentation and uncertainty estimation for

distributionally-shifted target domains. As a result, we train another segmentation network

f�, which can segment the source domain as well as f✓, but is also able to detect error due to

distributional shift. This is done by initialising the encoder of f� with EFM, and then jointly

performing uncertainty training and task learning (from step (2)) to give f� = D� � E�, where

again the encoder is fine-tuned from EFM ! E�. While task learning promotes learning task-

specific features, the aim of uncertainty training is to maintain and refine the task-agnostic

features produced by EFM, as per the requirements set out in Section 3.5.2 and Section 3.5.3.

In the next section, we detail the method we have designed for this final step.

7.4 Uncertainty Training

The goal of this method is to expose the task-specific model f✓ to distributionally shifted

images and to find regions where segmentations are likely to be incorrect. Then, while

154

1

2 2

3

4

Figure 7.2: Overview for the training on f� with the loss L
c. The training image x is per-

turbed by masking to give xm at ¨. Then both images are segmented, and the soft con-
sistency H[p✓,pm

�
] and hard consistency Mc between these segmentations are calculated, as

seen at ≠, where the latter is used to calculate the uncertainty threshold �. The model f�
then segments the unmasked image and estimates its uncertainty over this segmentation,
which is thresholded by �, to give M�

�
at Æ. Finally, the loss L

c is calculated as the soft con-
sistency masked by the binary uncertainty estimate M�

�
, seen at Ø.

finding these erroneous image regions, the goal is to train a new network f� to learn the

appearance of these regions and to express uncertainty over them.

Designed to achieve this goal, the method presented in this chapter builds on the method

in Chapter 6 by introducing the following changes to improve the training process:

• A masking policy is introduced to perturb the input image, such that incorrect seg-

mentations can be found in a way that is less dependent on hyperparameters than a

crop-and-resize task.

• The encoder is initialised with weights from a foundation model, which aids the train-

ing of a model that learns the relationship between image appearance and distribu-

tional uncertainty.

• One of the training branches is frozen, resulting in a training method that is less sus-

ceptible to feature collapse, a problem discussed in Section 6.5.4.

7.4.1 Learning Uncertainty Estimation

The objective for training f� to learn distributional uncertainty estimation in this chapter

is similar to the objective presented in Section 6.5. They rely on the assumption that the

155

consistency in segmentation of two images, which are perturbations of each other, can serve

as an approximation of ground-truth segmentation accuracy. We describe the objective in a

series of steps, which correspond to the numbers, e.g. ¨, in Figure 7.2.

(1) Perturbing the input

In this work, the perturbed images are x and xm, where the latter is a masked version of

the former, i.e. xm = m(x) for a masking function m, as shown at ¨ in Figure 7.2. Therefore,

instead of using a crop-and-resize policy as in Chapter 6, this work uses a masking policy in

order to perturb the input image and find regions of likely segmentation error. This follows

from the SSL literature, which is increasingly using masking as well as, or instead of, crop-

and-resize tasks in order to learn representations from unlabelled images, as seen in [31],

[112], [113]. The motivation and details of this masking policy are discussed in Section 7.5.

As previously discussed in Chapter 6, the aim of this type of training is to train a network

to detect inconsistency as a proxy for detecting error, in much the same way as SSL tasks

train a model to minimise inconsistency as a proxy for minimising task error. Therefore,

considering consistency with respect to masking is an appropriate choice for this type of

training.

(2) Calculating segmentation consistency

The perturbed images are segmented as p✓ = softmax � f✓(x) and pm
�

= softmax � f�(xm),

shown in Figure 7.2. The frozen segmentation network f✓ has been trained to maximise

segmentation quality in the source domain, and we are interested in determining when this

network erroneously segments distributionally-shifted images. Depicted as ≠ in Figure 7.2,

this is estimated by considering both the soft consistency H[p✓,pm
�
] 2 RH⇥W , where H[·, ·]

is the cross-entropy function, and the hard consistency Mc
2 {0, 1}H⇥W , where for a pixel

location i:

Mc
i
=

8
>><

>>:

1 if argmax[p✓,i] = argmax[pm
�,i

]

0 otherwise
(7.1)

The consistency mask Mc is used to calculate the uncertainty threshold � in the same

manner as in Section 6.5.1, where the proportion of pixels that are consistent is used as

156

an approximation of the proportion of pixels are certain, and therefore are estimated to be

correctly segmented. This uncertainty threshold � is used in the next step.

(3) Estimating uncertainty

In order to train f� to estimate high uncertainty over erroneous regions using the approach

presented in Section 6.5, we allow f� to reduce the soft consistency loss via the binary uncer-

tainty estimate M�

�
2 {0, 1}H⇥W . In this way, if the network estimates that a segmentation

is likely to be inconsistent, then it can express high uncertainty and mask out these pixels.

Shown at Æ in Figure 7.2, this binary uncertainty estimate is calculated by thresholding the

model’s uncertainty estimate, which is calculated for a pixel location i as follows:

M�

�,i
=

8
>><

>>:

1 if max � softmax � f�(x)]i > �

0 otherwise
(7.2)

Note that M�

�
is calculated from a separate segmentation p� = softmax � f�(x), i.e. the

segmentation by f� of the unmasked image x. This is important, as it is described in [31]

that there is a performance gap for neural networks trained on masked images and tested

with unmasked images, which is solved by full fine-tuning on unmasked images. In order

to avoid this performance gap, f� is directly trained to estimate uncertainty on unmasked

images.

(4) Mitigating inconsistency

Finally, the objective L
c can be calculated as follows (seen at Ø in Figure 7.2):

L
c =

P
NHW

i
M�

�,i
H[⇢T(p✓,i),pm

�,i
]

P
NHW

j=1 M�

�,j

(7.3)

Similar to Section 6.5, the model can reduce the loss by minimising the inconsistency

between the segmentations p✓ and pm
�
, or by expressing uncertainty via M�

�
.

An additional difference between this objective and that seen in Section 6.5, is the sharp-

ening function ⇢T(·). This is presented in [156] and, for a vector a 2 RK , is formulated

as ⇢T(ak) =
a
1/T

kP
K

j
a
1/T

j

. This work uses T = 0.5, and so ⇢ reduces the entropy of soft target

157

p✓,i. This is motivated for the same reasons as in Section 6.5, that it further increases the

separation between certain and uncertain pixels, however in the previous chapter, this was

achieved with the asymmetric architecture as opposed to the sharpening function ⇢ – as such

this method is simpler.

7.4.2 Avoiding Feature Collapse

A significant challenge in Chapter 6 was preventing feature collapse from occurring, as de-

tailed in Section 6.5.4, where, despite satisfying the objective, the feature representation was

no longer dependent on the input and contained no semantic information. Feature collapse

is a possible side-effect when maximising a consistency objective across branches, where in

this chapter, these branches are parameterised by f✓ and f�. A key benefit of the method in

this chapter is that feature collapse cannot occur, because, during uncertainty training, the

parameters of f✓ are not updated, i.e. f✓ is frozen.

This is made possible by the practise of initialising the encoders of f✓ and f� with foun-

dation model parameters. Without this practise, as is true in Chapter 6, the feature represen-

tation would be overly task-specific after the task learning step. The problem this causes is

that, initially, the segmentation consistency would be very low for target domain images as a

result of the initially poor representation of the target domain. This means that, initially, the

objective L
c maximises the consistency between very few pixels, and so the representation

of the target domain would not greatly improve. If one of the branches is frozen, then this

remains true, and as a result, the uncertainty estimation quality does not greatly improve

throughout training.

However, in Chapter 6, this is avoided by updating the parameters of both branches,

and so, while the consistency is initially low, it increases over the course of training and

therefore so does the quality of the representation and of uncertainty estimation. In this

chapter, initialising f✓ with foundation model parameters circumvents this problem, as even

after fine-tuning, the representation is good enough for the consistency to be high enough

to further improve the representation of f� using the target domain images.

158

7.5 Masked Image Modelling for Uncertainty Estimation

As discussed in the previous section, the uncertainty training method presented in this chap-

ter involves perturbing training images via a masking policy. This section will further moti-

vate this decision, and discusses the specifics of the masking policy used.

7.5.1 Background

This thesis, much like the SSL literature, uses both crop-and-resize and masking tasks in

order to perturb the appearance of training images, whilst preserving their semantic content.

‘Masked signal modelling’ – where a portion of an input signal is masked out, and a

model is trained to reconstruct the masked signal – has been a successful approach for

NLP for a number of years, by the name of Masked Language Modeling (MLM). The ap-

plication of this approach to computer vision is more challenging for a number of reasons.

Firstly, language is discrete and semantically dense, and so reconstruction is formulated

as a classification problem, which requires the sophisticated modelling of semantic infor-

mation. In contrast, image reconstruction requires predicting continuous pixel values, for

which high-frequency local information needs to be modelled. Therefore, successful MIM

tasks require a different formulation to MLM tasks, such as seen in iBOT [113], SimMiM [157]

and BEiT [158].

Secondly, CNNs previously dominated computer vision and are not suited to MIM tasks,

as it is not clear how to encode the image masking task. This is in contrast to masking for

transformer architectures, such as ViT [36], where masking tokens and positional encodings

allow for the use of a similar formulation to that seen in MLM.

For the cited works in this section, it is specifically semantic information that is learned

because the masking policy removes information that can only be reconstructed with a

wider semantic understanding of the image, as opposed to low-level high-frequency in-

formation. This can be achieved by (1) randomly sampling a high proportion of patches,

such as in [112], [157], where it is argued that masking tasks for images are easy due to the

redundancy of information, therefore requiring an aggressive masking policy to make the

task sufficiently difficult, or (2) removing a smaller proportion of semantically important

patches, such that the remaining unmasked patches are less informative of the whole, re-

159

quiring significant semantic understanding to reconstruct the image, such as in [159]–[161],

which use a range of methods to inform the masking policy. Methods such as [113], [158]

randomly mask out blocks of multiple patches in a local region, making this masking policy

similar to the latter of the two previous strategies, albeit noisier due to its more random and

un-informed nature.

7.5.2 Motivation

A particular motivation for masking tasks over crop-and-resize tasks, such as in [32], [106],

[162], is that the objective is defined on a patch-wise basis, rather than an image-wise basis.

This means that the network is directly trained to encode patch-wise semantics, as opposed

to image-wise semantics. This is demonstrated in DINOv2 [31], where an iBOT-based ob-

jective is used and is shown to have significantly better fine-tuned semantic segmentation

performance over DINOv1 [162] and OpenCLIP [163], both of which use image-wise ob-

jectives. This suggests that masking could be a better alternative for estimating, and then

learning to detect, segmentation error, instead of adapting crop-and-resize tasks to segmen-

tation as seen in Chapter 6.

An additional benefit of masking tasks is their simplicity. Defining a crop-and-resize

task involves defining the size of the smaller crop relative to the larger crop. If this is made

too small, then there will not be sufficient context to recognise objects or object parts, and

the network is likely to focus on low-level images statistics. If the smaller crop is made too

large, then the task will be made too easy, and the network will not be required to learn

robust semantic features. There is a similar consideration for masking tasks, based on the

scale of masked regions and the proportion of the image that is masked. However, for crop-

and-resize tasks, appearance transforms must also be defined – such as augmenting the hue,

augmenting the saturation, adding random noise – along with hyperparameters associated

with the magnitude of each of these. Therefore, defining a masking task is simpler and

involves considerably fewer hyperparameters.

160

7.5.3 Masking Policy

The aim of the masking policy is such that the segmentations produced by f✓ and f� � m

are consistent when the class assignment for that pixel is correct, and they are inconsistent

otherwise. A major difference between the masking task in this method and those found in

literature is that the output space in which comparisons between masked and unmasked are

made is semantic segmentation space, and not an abstract feature space or RGB space.

The masking policy is implemented as m(x) = M � [E]0:1(x), where [E]0:1 : R3⇥H⇥W
!

RFpe⇥Ĥ⇥Ŵ is the patch embedding of encoder E, M 2 {0, 1}Ĥ⇥Ŵ is the patch-wise mask, and

� is the element-wise product.

Another difference with commonly presented masking tasks is the nature of the data

used. In contrast to datasets such as ImageNet, for driving datasets such as Cityscapes

there exists a greater range of scale within classes and between classes. For example, a

traffic light in the distance and a traffic light up close occupy a very different number of

pixels. Additionally the classes: building, road, sky take up much more of images than

pedestrian, traffic sign, traffic light, pole.

In masking tasks, it is generally important to mask out semantically consistent regions

of images, e.g. object parts. The significance of the range of scales is therefore that it is

much harder to hand-craft a policy that gets the scale of the masks correct. More concretely,

the challenge is the following: either you (1) mask out large regions, and suffer the case

that entire semantic objects are masked out, with no context information to infer that they

existed, or (2) you mask out small regions, and the masking task is too easy, and the model

can solve the task by local information and interpolation. If the task is too easy or too hard

then this breaks the assumption that consistency approximates accuracy, and prevents the

learning of high-quality uncertainty estimation.

The solution that was found to be the most effective is to mask patches independently,

such that for a patch i, the mask is given by:

Mi = Bernoulli(pmask) (7.4)

Where pmask = 0.5 worked effectively. The fact that patches are masked independently helps

161

to minimise the likelihood that small semantic instances are entirely masked out, while also

providing a suitable level of difficulty.

A number of more complex masking policies were tried in order to try and maximise

the effectiveness of the masking task. These included: (a) masking only the most uncertain

pixels, in order to focus the task on the image regions that were most difficult to segment

(b) learning a masking policy on a pretrained network that maximises the segmentation

inconsistency (c) experiments where the loss was only backpropagated w.r.t. the masked

or unmasked regions. None of these policies were able to improve upon the performance

of the simple mask, and so due to their complexity, they are not proposed as part of the

method. The benefit of a simple method is also that it is unlikely to be biased to the datasets

considered in the experiments in this chapter.

7.6 Experimental Setup

7.6.1 Network Architecture

The segmentation network architecture used in this work is the Mask2Former [148] archi-

tecture. For a description of the details of this architecture, see Figure 7.3. The image size

used during training in this method is (H, W) = (224, 224), and the dimensions of the mask

features are (H̄, W̄) = (64, 64).

It is worth noting that the query embeddings act in a very similar manner to prototypes

in prototype segmentation (described in Section 6.2.1), however instead of being calculated

from labelled images, they are initialised and progressively refined by a transformer.

The encoder used with Mask2Former is the DeiT transformer [153], as we want to use

the weights from the training of DINOv1 [162] and DINOv2 [31].

7.6.2 Network Initialisation

The primary foundation model used is the ViT-Small from DINOv2 [31], which is distilled

from a ViT-Giant foundation model. In order to investigate the importance of these weights,

the results are compared to initialising with ViT-Small weights from DINOv1 [162]. The

weights from DINOv1 [162] and DINOv2 [31] represent different levels of generality in fea-

162

Figure 7.3: Illustration of the Mask2Former segmentation network, l = f(x), used in this
work. The encoder E embeds an image x 2 R3⇥H⇥W , which is then progressively upsampled
by a decoder DUP, yielding a series of feature maps with the final one being the mask features
zm 2 R256⇥H̄⇥W̄ . All but the last of these feature maps are used to condition a transformer
decoder DTr to transform initial query embeddings zq0 2 RK⇥256 into query embeddings zq 2
RK⇥256. These final query embeddings are then dot-producted, illustrated as �, with mask
features zm 2 R256⇥H̄⇥W̄ to give the logits l 2 RK⇥H̄⇥W̄ . The logits are then finally bilinearly
upsampled to the original image spatial dimensions l 2 RK⇥H⇥W .

ture representation, with the former being less general than the latter. This is judged on the

transfer learning performance found in each paper. This difference is a result of DINOv2

used an improved training procedure on a larger, more diverse dataset.

The DINOv1 model is trained on ImageNet-22k without labels, therefore containing ap-

proximately 14 million images, while DINOv2 is trained on a dataset containing 142 million

images. The dataset for DINOv2 is comprised of a set of image classification datasets (in-

cluding ImageNet-22k), segmentation, depth estimation and image retrieval datasets. Addi-

tionally, images are sampled from a pool of internet-scraped images based on their similarity

with these datasets, thus further increasing the diversity. For example, an additional 57 mil-

lion images are sampled that bear resemblance to the 14 million images in ImageNet-22k.

7.6.3 Data

The evaluation of models for this method is similar to that of the previous chapter. We use

labelled training images to define the source domain, and then unlabelled training images

and labelled images from target domains. In this work, Cityscapes is the source domain,

and the following target domains are used: SAX London, SAX New Forest, SAX Scotland,

BDD (described in Chapter 4).

We also make the point to test a model trained with unlabelled data from a given target

domain on each of the other labelled test datasets. This allows us to examine how uncer-

163

tainty training in one domain generalises to other target domains. We also again test on

WildDash [134], which is a domain that contains no unlabelled training images, and is itself

very diverse.

We also perform testing on the validation set in Cityscapes in order to compare how

uncertainty estimation performance in the source domain compares to that of the target

domains.

7.6.4 Baselines

In order to evaluate the performance of the method proposed in this chapter, we consider a

number of baselines. Unlike the baselines in Chapter 6, each of the baselines in this method

are either initialised with DINOv1 or DINOv2 weights, as will be described in their model

name. This makes for fair comparison to our proposed method, and provides an interesting

contrast with the previous chapter’s baseline, as it tells us the effect of general representa-

tions on a range of different methods. As before, we consider both epistemic uncertainty

estimation techniques and OoD detection-based representation methods.

For the former, we train both MCD networks and sets of ensembles. It is again worth

noting that these methods are computationally heavy compared with methods such as ours

and representation-based methods.

As for the representation-based methods, we consider methods that are trained in a su-

pervised manner on the source dataset, and then define a specific inference procedure in

order to estimate uncertainty. The inference procedures considered are (1) calculating the

max softmax score, named as MaxS-xxx, and (2) and calculating Mahalanobis distance be-

tween an extracted target pixel feature and the mean class-wise source domain features,

names as GMM-xxx. These representation baselines allow us to examine how the proposed

uncertainty training provides an improved representation than either full supervised fine-

tuning of encoder and decoder, or leveraging the general encoder with supervised trained

decoder.

164

7.7 Experiments and Results

This section firstly describes the experiments performed in this chapter. Subsequently, the

quantitative results are discussed and shown in Table 7.2, Table 7.1 and Figure 7.4. Addi-

tional qualitative results can be found in Figure 7.5.

Data: We train models with different unlabelled target datasets, and evaluate which datasets

worked best for learning uncertainty estimation for each test domain. The dataset used can

be found in the model name, e.g. xxx-LDN-xxx is trained with unlabelled SAX London

images.

Initialisation: The models trained are either initialised with DINOv1 or DINOv2 weights

for the encoder. This allows us to investigate how impactful a more general representation

is to uncertainty estimation performance. This information can be seen in the model names:

xxx-xxx-d2 uses DINOv2 weights and xxx-xxx-d1 uses DINOv1.

Input Augmentation: The method in this chapter uses a masking task instead of a crop-

and-resize task to calculate segmentation consistency, therefore we investigate the benefits

of each. The models trained with a masking task are named Mask-xxx-xxx, while the

models trained with crop-and-resize are named C&R-xxx-xxx.

Freezing f✓: We investigate the effect of not freezing f✓, as this a key difference between

this method and that in Chapter 6. The equivalent branch to f✓ in the method in Chap-

ter 6 was not frozen, but updated along with the branch equivalent to f�, as discussed in

Section 7.4.2. If f✓ is frozen, this can been seen in the method name as xxx-f+
✓
.

Freezing E: As described in the framework in Section 7.3, in order to maximise the segmen-

tation quality on the source domain, the encoder E is fine-tuned. This reduces the amount

of task-agnostic information in the encoder’s representation, and therefore we hypothesized

in Section 7.2 that this would reduce the quality of uncertainty estimation. We investigate

this by performing experiments where the encoder is frozen during training on the source

domain. Results for this are found in the method names as xxx-E+.

165

Figure 7.4: In these plots, we measure misclassification detection performance using F0.5

scores plotted against the proportion of pixels that are certain and accurate p(a, c). The base-
lines are trained only with labelled Cityscapes data, while our proposed model, Mask-d2,
leverages unlabelled images from the domain in which testing is occurring. All models are
able to perform uncertainty estimation similarly well for Cityscapes, however when tested
on the distributionally shifted target domains, Mask-d2’s performance exceeds that of the
baselines. The gap in MaxF0.5 score between Mask-d2 and MaxS-d2, MaxS-d2-E⇤ is de-
scriptive of the benefit of our proposed uncertainty training.

7.7.1 Different Target Domains

Firstly, it can be seen in Figure 7.4 that the proposed Mask-d2 models outperform the base-

lines in terms of MaxF1/2. In Table 7.1, we can see that the model with highest MaxF1/2

score on each test dataset is the Mask-d2 model that is trained with unlabelled images from

same domain as the test dataset. This is also very nearly true for the AUPR metric, shown

in Table 7.2. The differences between the Mask-d2 models trained on different unlabelled

domains, however, are not that large, and it is common for a different Mask-d2 model to

outperform each of the baselines, showing that the proposed models generalise well to per-

forming uncertainty estimation in different domains.

This is shown particularly well by looking at the performance of the Mask-d2 models

on the WildDash dataset for which no unlabelled images are available. The best performing

model was Mask-d2-BDD, but each of the other models also performed well compared

with the baselines. The reason for the BDD dataset outperforming the rest is perhaps due

to its greater diversity, due to its collection in a wider range of conditions and wider range

of locations. It is nonetheless true, that for each domain, using domain-specific training

unlabelled images is the best performing strategy, rather than opting for a more general

dataset such as BDD.

166

MaxF1/2 @ p(a, c)
Method CS LDN NF SCOT BDD WD

Ba
se

lin
es

Ensemble-5-d2 0.944 @ 0.721 0.939 @ 0.699 0.94 @ 0.697 0.894 @ 0.552 0.932 @ 0.695 0.912 @ 0.624
Ensemble-10-d2 0.945 @ 0.727 0.94 @ 0.689 0.942 @ 0.701 0.891 @ 0.537 0.933 @ 0.7 0.913 @ 0.626

MCD-5-d2 0.935 @ 0.726 0.919 @ 0.656 0.912 @ 0.64 0.803 @ 0.416 0.926 @ 0.679 0.903 @ 0.599
MCD-10-d2 0.935 @ 0.726 0.92 @ 0.656 0.912 @ 0.639 0.805 @ 0.415 0.926 @ 0.679 0.903 @ 0.599
MaxS-d2-E+ 0.933 @ 0.714 0.899 @ 0.658 0.916 @ 0.641 0.857 @ 0.507 0.925 @ 0.678 0.908 @ 0.609
MaxS-d2 0.944 @ 0.739 0.881 @ 0.674 0.883 @ 0.659 0.805 @ 0.458 0.894 @ 0.674 0.87 @ 0.603
GMM-d2 0.904 @ 0.757 0.878 @ 0.692 0.881 @ 0.683 0.778 @ 0.415 0.864 @ 0.674 0.805 @ 0.567

MaxS-d1-E+ 0.912 @ 0.67 0.859 @ 0.579 0.899 @ 0.612 0.82 @ 0.359 0.886 @ 0.586 0.86 @ 0.483
MaxS-d1 0.936 @ 0.716 0.858 @ 0.61 0.887 @ 0.628 0.79 @ 0.343 0.896 @ 0.622 0.853 @ 0.497
GMM-d1 0.894 @ 0.751 0.789 @ 0.639 0.823 @ 0.61 0.687 @ 0.281 0.827 @ 0.656 0.743 @ 0.572

C&R-NF-d2 0.928 @ 0.703 0.911 @ 0.641 0.925 @ 0.662 0.869 @ 0.518 0.912 @ 0.669 0.891 @ 0.61
C&R-NF-d2-f+

✓
0.931 @ 0.69 0.894 @ 0.658 0.902 @ 0.66 0.863 @ 0.524 0.923 @ 0.676 0.908 @ 0.618

C&R-NF-d1 0.917 @ 0.666 0.867 @ 0.567 0.901 @ 0.607 0.825 @ 0.364 0.898 @ 0.618 0.874 @ 0.522
C&R-NF-d1-f+

✓
0.919 @ 0.67 0.894 @ 0.599 0.907 @ 0.612 0.752 @ 0.338 0.891 @ 0.622 0.852 @ 0.5

O
ur

s

Mask-LDN-d2 0.945 @ 0.735 0.948 @ 0.693 0.948 @ 0.697 0.889 @ 0.481 0.934 @ 0.694 0.913 @ 0.605
Mask-NF-d2 0.947 @ 0.724 0.941 @ 0.679 0.948 @ 0.696 0.903 @ 0.517 0.927 @ 0.677 0.902 @ 0.582
Mask-SCOT-d2 0.934 @ 0.706 0.924 @ 0.645 0.939 @ 0.693 0.905 @ 0.568 0.92 @ 0.662 0.899 @ 0.579
Mask-BDD-d2 0.938 @ 0.725 0.931 @ 0.675 0.942 @ 0.698 0.891 @ 0.501 0.936 @ 0.696 0.918 @ 0.631
Mask-LDN-d1 0.931 @ 0.693 0.9 @ 0.623 0.919 @ 0.641 0.848 @ 0.361 0.91 @ 0.63 0.879 @ 0.508
Mask-SCOT-d1 0.926 @ 0.679 0.881 @ 0.599 0.919 @ 0.636 0.851 @ 0.397 0.907 @ 0.624 0.87 @ 0.502

Table 7.1: Misclassification Detection performance described by MaxF1/2 @ p(a, c) for a range
of test domains.

AUPR
Method CS LDN NF SCOT BDD WD

Ba
se

lin
es

Ensemble-5-d2 0.98 0.976 0.979 0.933 0.967 0.948
Ensemble-10-d2 0.981 0.976 0.978 0.932 0.967 0.946

MCD-5-d2 0.977 0.971 0.963 0.778 0.971 0.959
MCD-10-d2 0.977 0.971 0.963 0.786 0.971 0.959
MaxS-d2-E+ 0.975 0.958 0.968 0.931 0.97 0.961
MaxS-d2 0.982 0.933 0.942 0.861 0.94 0.919
GMM-d2 0.936 0.894 0.914 0.838 0.896 0.845

MaxS-d1-E+ 0.966 0.92 0.953 0.889 0.942 0.925
MaxS-d1 0.98 0.913 0.942 0.859 0.949 0.918
GMM-d1 0.921 0.781 0.866 0.741 0.835 0.739

C&R-NF-d2 0.972 0.967 0.975 0.936 0.954 0.937
C&R-NF-d2-f+

✓
0.978 0.927 0.932 0.92 0.965 0.96

C&R-NF-d1 0.972 0.929 0.954 0.883 0.951 0.935
C&R-NF-d1-f+

✓
0.972 0.949 0.957 0.794 0.941 0.915

O
ur

s

Mask-LDN-d2 0.985 0.987 0.985 0.947 0.973 0.966
Mask-NF-d2 0.988 0.984 0.985 0.958 0.964 0.958
Mask-SCOT-d2 0.977 0.975 0.98 0.96 0.965 0.957
Mask-BDD-d2 0.98 0.977 0.981 0.952 0.972 0.967
Mask-LDN-d1 0.979 0.956 0.969 0.91 0.957 0.937
Mask-SCOT-d1 0.977 0.936 0.966 0.92 0.959 0.933

Table 7.2: Misclassification Detection performance summarised over all possible thresholds
described by AUPR for a range of test domains.

7.7.2 Freezing E

Table 7.1 and Table 7.2 show that by fine-tuning the encoder, the uncertainty quality is im-

proved for the distributionally shifted test domains. Both the MaxF1/2 and AUPR metrics in

these tables are higher for MaxS-d2-E+ than for MaxS-d2. This confirms our hypothesis,

and is explained by the fact that the fine-tuning removes task-agnostic information from the

167

representation.

When considering the less general representation of DINOv1, this effect is similar, but

much less pronounced, i.e. there is only a very small benefit to uncertainty estimation in not

fine-tuning the DINOv1 representation. In fact, the fully fine-tuned model performs slightly

better for the BDD test dataset. This observation can be seen by comparing MaxS-d1-E+

and MaxS-d1 in Table 7.1 and Table 7.2, and can be explained by the fact that there was

significantly less task-agnostic information in the DINOv1 representation to begin with. This

means that there is less of this information to remove by fine-tuning, and therefore less of a

drop in quality of uncertainty estimation.

Comparing Mask-d2 to MaxS-d2-E+ in Table 7.1 and Table 7.2 shows us that the rep-

resentation learned with our uncertainty training has improved upon the general pretrain-

ing by learning task-specific attributes with are important to uncertainty estimation, while

also not over-fitting to the training data. This is equally true when comparing Mask-d1 to

MaxS-d1-E+.

7.7.3 Comparing perturbation methods

It is of interest to us to consider how the performance of the C&R approaches compare to

that of the Mask approaches. We show in Table 7.1 and Table 7.2, the performance of the

Mask approaches are generally better than that of C&R approaches, but there is an additional

benefit which is important to highlight, relating to the discussion in Section 7.5.2.

Using C&R clearly requires designing both a cropping and colour-space augmentation

scheme, and it is important that, particularly the latter, is tuned in order to be optimal for

the data used. We show that this is however less true for our masking task, which only has

one hyperparameter, which it is quite robust to.

We trained two models for each of Mask and C&R each with different hyperparameters

on the SAX New Forest domain. For the former, we use masking policies with pmask = 0.25

and pmask = 0.75. For the latter, we train one model where less colour-space augmentation,

and one with a cropping policy with different hyperparameters.

For the masking task with pmask = 0.25 and pmask = 0.75, the MaxF1/2 @ p(a, c) scores were

0.945 @ 0.705 and 0.951 @ 0.713 respectively. For the C&R task, the MaxF1/2 @ p(a, c) scores

168

were 0.926 @ 0.655 and 0.891 @ 0.648 respectively.

We can see that the scores for the C&R task varies considerably more than that of the

masking task. For this reason, it is much simpler and easier to use a masking task to obtain

high-quality uncertainty estimates.

7.7.4 Freezing f✓

We would like to determine the effects of freezing f✓ as it prevents a significant training

failure mode (as discussed in Section 7.4.2), but it is possible that it could impact quality of

learned uncertainty estimation. As per our previous chapter, we test this on the C&R task,

and do so in the SAX New Forest domain. These models can be found in Table 7.1 and

Table 7.2 as C&R-NF-d1-f+
✓

and C&R-NF-d2-f+
✓
.

When training with DINOv1 weights, we see that there is a improvement in uncertainty

estimation quality when the f✓ is not frozen. This benefit is however not seen when using

DINOv2. This means that when the initialisation is sufficiently general, we can simplify the

training procedure greatly by freezing f✓ with no cost in performance.

7.8 Conclusion

This final method has used a combination of large-scale training and driving-domain-specific

uncertainty training to learn distribution uncertainty estimation. It is therefore a combina-

tion of the ideas presented in Chapter 5 and Chapter 6. Instead of learning a large-scale

OoD detection problem like in Chapter 5, this work used a model that is distilled from a net-

work trained with more typical large-scale self-supervised learning. This chapter has shown

that these approaches are complementary and lead to very high quality distributional un-

certainty estimation.

In addition to the changes in architecture and network initialisation, this chapter also

advocates for the use of masking instead of crop-and-resize data augmentation. It suggests

that when using an encoder with a transformer architecture, masking may well be a more

convenient choice due to decreased reliance on tuned hyperparameters.

169

(a) SAX London

(b) SAX New Forest

(c) SAX New Forest

Figure 7.5: Qualitative results for the proposed Mask-d2 model, presenting (left) an RGB
image, (middle) the semantic segmentation and (right) the estimated uncertainty in the jet
colour map, where red is uncertain and blue is certain. For each distributionally shifted
image, the incorrect segmentations are effectively detected by the model’s estimated uncer-
tainty. The variant of Mask-d2 model used is that which was trained on the same domains
as the test image shown (test domain described in sub-caption).

170

Chapter 8

Conclusion

Contents

8.1 Summary . 171

8.2 Closing Remarks . 174

8.1 Summary

It is vitally important that safety and trust are considered in the deployment of robotic sys-

tems, and thus should be a key motivator for their system design. As such, the objective of

this thesis has been to tackle the problem of distributional shift, where data unlike that seen

in model training causes an increase in error rate and potentially dangerous deployment

scenarios.

With a specific focus on the task of semantic segmentation, this thesis has investigated

solutions to the problem of distributional shift that involve the detection of test error, i.e.

uncertainty estimation. This is an orthogonal avenue of mitigating test error to that of re-

ducing it, and this thesis argues that both are important steps in the effort to ensure safety

and trust when using deep learning systems for safety-critical applications.

For mobile robotics applications, this thesis has concluded that, in order to reduce the

computational cost at inference time, uncertainty estimates should ideally be output by a

segmentation network alongside its estimated semantic segmentations. In light of the dis-

cussion of model miscalibration in Chapter 2, the literature regarding uncertainty estimation

171

and OoD detection was investigated and discussed in Chapter 3, with the aim to identify

methods that provide insight for the training of a segmentation network to output high-

quality uncertainty estimates in a single forward pass.

A conclusion from Chapter 3 was that this thesis should focus on methods that learn

uncertainty estimation from training data that is distributionally-shifted from the labelled

segmentation training dataset. This is key, because the representation learned from super-

vised semantic segmentation training is specific to the task and the domain defined by the

labelled dataset used, which makes uncertainty estimation challenging on a shifted domain.

For this reason, distributional uncertainty estimation can be improved by using additional

training data to learn a representation that can better detect the relevant semantic differences

between the labelled segmentation dataset and a given test image.

Following Chapter 3 is a search for the answers to the following questions: (a) What data

should be used to tailor a segmentation network to perform high-quality pixel-wise uncer-

tainty estimation on distributionally-shifted test data? (b) What does a training procedure

look like that allows us to train on this data for this purpose? In answering these questions,

this thesis has presented three methods that learn distributional uncertainty estimation from

a distributionally-shifted training dataset.

The first method, presented in Chapter 5, trains a segmentation network to perform

large-scale OoD detection by training on a large-scale image recognition dataset, in addi-

tion to semantic segmentation. Given the availability of very large and diverse datasets

such as ImageNet [97] or LAION-5B [135] which are comprised almost entirely of natural

images from outside of the domain of the labelled segmentation training dataset, it is possi-

ble to expose a segmentation network to a diverse set of OoD images. This method defines

an OoD detection task based on this to train a network to learn a separable representation of

the two types of training data: in-distribution labelled driving images from a given domain,

and unlabelled images from a diverse natural image dataset. The key contributions of this

method are as follows:

• A data augmentation procedure that combines in-distribution and OoD images on a

pixel-wise basis and effectively reduces the appearance difference between them. This

results in an pixel-wise OoD detection task that is sufficiently challenging to train a

172

segmentation network to robustly perform distributional uncertainty estimation.

• A contrastive loss function that trains a segmentation network to learn a representation

in which in-distribution and OoD instances are separable, whilst accounting for the

label noise induced by using large-scale unlabelled image datasets.

Our primary insight from this chapter was as follows: the smaller the difference between

distributionally-shifted training images and in-distribution training images, the higher the

quality of the learned uncertainty estimation.

The second method, presented in Chapter 6, draws on this insight and uses distributionally-

shifted driving domain images during training. This is because these images are inherently

more similar to the in-distribution labelled driving images than images from a large-scale

dataset, and can therefore lead to more robust learned distributional uncertainty estimation.

The contributions of this method are as follows:

• A training task based on crop-and-resize data augmentation to detect regions of likely

segmentation error.

• An inference procedure to output uncertainty as a feature space distance, coupled with

a loss function which improves the segmentation network’s representation for distri-

butional uncertainty estimation.

This method is evaluated with an extensive set of experiments to measure the quality of

the proposed model’s uncertainty estimates, and to ablate the method to investigate how its

components affect the empirical performance.

The final method, presented in Chapter 7, makes use of both the distributionally-shifted

driving domain images from the previous chapter and diverse natural images from a unla-

belled large-scale dataset. In doing so, it combines the benefits of the previous two methods.

This method’s contributions are as follows:

• A proposed framework for training a segmentation network, involving three steps.

The first step trains an encoder using a large diverse image dataset in a self-supervised

manner, yielding a foundation model. Secondly, this encoder is used to initialise the

segmentation network, which is fine-tuned to perform semantic segmentation on a

173

given domain. Finally, a new segmentation network, also initialised with the encoder

from the first step, is trained to detect when error occurs on unlabelled distributionally-

shifted driving images. This final step fine-tunes the model for both distributional un-

certainty estimation and semantic segmentation, and therefore maintains more of the

task-agnostic information in the encoder’s representation than is the case for standard

fine-tuning.

• A method for the final step that involves a masking task, which is simpler and more

effective than using crop-and-resize data augmentation.

8.2 Closing Remarks

In the broadest terms, this thesis seeks to design deep learning systems for which safety and

trust are of paramount importance. This is a significant challenge, and one which ought

to be central to the field of robotics in the current era. It is also a challenge that can bene-

fit greatly from the increasing efforts into training and open-sourcing large-scale computer

vision models, as discussed in Chapter 7. At the nexus of foundation models, model distil-

lation and uncertainty training, we believe there is great promise for the further reduction

in error rate for robotic perception systems.

174

Bibliography

[1] Assuring the operational safety of automated vehicles – Specification. Standard. British

Standards Institution, 2022.

[2] Wayve Ltd. Driving computer vision with deep learning. 2018. URL: https://wayve.

ai/thinking/driving-computer-vision-with-deep-learning/.

[3] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, et al. “End-to-end learning of

geometry and context for deep stereo regression”. In: Proceedings of the IEEE interna-

tional conference on computer vision. 2017.

[4] Jyh-Jing Hwang, Henrik Kretzschmar, Joshua Manela, et al. “Cramnet: Camera-radar

fusion with ray-constrained cross-attention for robust 3d object detection”. In: Euro-

pean Conference on Computer Vision. Springer. 2022, pp. 388–405.

[5] Jiankun Wang, Tianyi Zhang, Nachuan Ma, et al. “A survey of learning-based robot

motion planning”. In: IET Cyber-Systems and Robotics (2021).

[6] Moataz Samir, Chadi Assi, Sanaa Sharafeddine, et al. “Age of information aware

trajectory planning of UAVs in intelligent transportation systems: A deep learning

approach”. In: IEEE Transactions on Vehicular Technology (2020).

[7] Peide Cai, Yuxiang Sun, Yuying Chen, et al. “Vision-Based Trajectory Planning via

Imitation Learning for Autonomous Vehicles”. In: 2019 IEEE Intelligent Transportation

Systems Conference (ITSC). 2019.

[8] Siddhant Gangapurwala, Mathieu Geisert, Romeo Orsolino, et al. “RLOC: Terrain-

Aware Legged Locomotion Using Reinforcement Learning and Optimal Control”.

In: IEEE Transactions on Robotics (2022).

175

https://wayve.ai/thinking/driving-computer-vision-with-deep-learning/
https://wayve.ai/thinking/driving-computer-vision-with-deep-learning/

[9] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, et al. “Learning dex-

terous in-hand manipulation”. In: The International Journal of Robotics Research (2020).

[10] Sumedh A Sontakke, Jesse Zhang, Sébastien MR Arnold, et al. “RoboCLIP: One Demon-

stration is Enough to Learn Robot Policies”. In: arXiv preprint arXiv:2310.07899 (2023).

[11] Alex Kendall, Jeffrey Hawke, David Janz, et al. “Learning to drive in a day”. In: 2019

International Conference on Robotics and Automation (ICRA). IEEE. 2019.

[12] Anthony Brohan, Noah Brown, Justice Carbajal, et al. “RT-1: Robotics Transformer

for Real-World Control at Scale”. In: arXiv preprint arXiv:2212.06817. 2022.

[13] Sergey Levine, Chelsea Finn, Trevor Darrell, et al. “End-to-end training of deep vi-

suomotor policies”. In: The Journal of Machine Learning Research (2016).

[14] Dan Barnes, Rob Weston, and Ingmar Posner. “Masking by Moving: Learning Distraction-

Free Radar Odometry from Pose Information”. In: Conference on Robot Learning (CoRL).

2019.

[15] Georgi Pramatarov, Daniele De Martini, Matthew Gadd, et al. “BoxGraph: Semantic

place recognition and pose estimation from 3D LiDAR”. In: 2022 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 7004–7011.

[16] Ping-Rong Chen, Shao-Yuan Lo, Hsueh-Ming Hang, et al. “Efficient road lane mark-

ing detection with deep learning”. In: IEEE 23rd International Conference on Digital

Signal Processing (DSP). 2018.

[17] David Williams, Daniele De Martini, Matthew Gadd, et al. “Keep off the grass: Per-

missible driving routes from radar with weak audio supervision”. In: 2020 IEEE 23rd

International Conference on Intelligent Transportation Systems (ITSC). IEEE.

[18] Saturnino Maldonado-Bascon, Sergio Lafuente-Arroyo, Pedro Gil-Jimenez, et al. “Road-

Sign Detection and Recognition Based on Support Vector Machines”. In: IEEE Trans-

actions on Intelligent Transportation Systems (2007).

[19] Felix Stache, Jonas Westheider, Federico Magistri, et al. “Adaptive Path Planning for

UAV-based Multi-Resolution Semantic Segmentation”. In: 2021 European Conference

on Mobile Robots (ECMR). 2021.

176

[20] Minjie Hua, Yibing Nan, and Shiguo Lian. “Small obstacle avoidance based on RGB-

D semantic segmentation”. In: Proceedings of the IEEE/CVF international conference on

computer vision workshops. 2019.

[21] Jungseok Hong, Karin de Langis, Cole Wyethv, et al. “Semantically-aware strategies

for stereo-visual robotic obstacle avoidance”. In: 2021 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2021, pp. 2450–2456.

[22] Yunong Tian, Guodong Yang, Zhe Wang, et al. “Apple detection during different

growth stages in orchards using the improved YOLO-V3 model”. In: Computers and

Electronics in Agriculture (2019).

[23] Eleftherios Lygouras, Nicholas Santavas, Anastasios Taitzoglou, et al. “Unsupervised

human detection with an embedded vision system on a fully autonomous UAV for

search and rescue operations”. In: Sensors (2019).

[24] Richard Bormann, Florian Weisshardt, Georg Arbeiter, et al. “Autonomous dirt detec-

tion for cleaning in office environments”. In: IEEE international conference on robotics

and automation. 2013.

[25] Marius Cordts, Mohamed Omran, Sebastian Ramos, et al. “The cityscapes dataset

for semantic urban scene understanding”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016.

[26] Jun-Yan Zhu, Taesung Park, Phillip Isola, et al. “Unpaired Image-to-Image Transla-

tion Using Cycle-Consistent Adversarial Networks”. In: 2017 IEEE International Con-

ference on Computer Vision (ICCV) (2017).

[27] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, et al. “Advent: Adversarial entropy

minimization for domain adaptation in semantic segmentation”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[28] Yaroslav Ganin and Victor Lempitsky. “Unsupervised domain adaptation by back-

propagation”. In: International Conference on Machine Learning. PMLR. 2015.

[29] Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, et al. “Adversarially

learned one-class classifier for novelty detection”. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition. 2018.

177

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, et al. “Learning transferable visual

models from natural language supervision”. In: International Conference on Machine

Learning. 2021.

[31] Maxime Oquab, Timothée Darcet, Theo Moutakanni, et al. DINOv2: Learning Robust

Visual Features without Supervision. 2023.

[32] Ting Chen, Simon Kornblith, Mohammad Norouzi, et al. “A simple framework for

contrastive learning of visual representations”. In: International Conference on Machine

Learning. 2020.

[33] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic

segmentation”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2015, pp. 3431–3440.

[34] Kaiming He, Georgia Gkioxari, Piotr Dollár, et al. “Mask r-cnn”. In: Proceedings of the

IEEE international conference on computer vision. 2017, pp. 2961–2969.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep residual learning for im-

age recognition”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016.

[36] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, et al. “An Image is Worth

16x16 Words: Transformers for Image Recognition at Scale”. In: ICLR (2021).

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. “Attention is all you need”. In:

Advances in neural information processing systems (2017).

[38] Enze Xie, Wenhai Wang, Zhiding Yu, et al. “SegFormer: Simple and efficient design

for semantic segmentation with transformers”. In: Advances in Neural Information Pro-

cessing Systems (2021).

[39] Tete Xiao, Yingcheng Liu, Bolei Zhou, et al. “Unified perceptual parsing for scene

understanding”. In: Proceedings of the European conference on computer vision (ECCV).

2018.

[40] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, et al. “Rethinking semantic segmenta-

tion from a sequence-to-sequence perspective with transformers”. In: Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition. 2021.

178

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, et al. “Dropout: A Simple Way

to Prevent Neural Networks from Overfitting”. In: Journal of Machine Learning Re-

search (2014).

[42] Yuichi Yoshida and Takeru Miyato. “Spectral norm regularization for improving the

generalizability of deep learning”. In: arXiv preprint arXiv:1705.10941 (2017).

[43] Chuan Guo, Geoff Pleiss, Yu Sun, et al. “On Calibration of Modern Neural Net-

works”. In: Proceedings of the 34th International Conference on Machine Learning. 2017.

[44] Matthias Minderer, Josip Djolonga, Rob Romijnders, et al. “Revisiting the calibration

of modern neural networks”. In: Advances in Neural Information Processing Systems 34

(2021), pp. 15682–15694.

[45] Yaniv Ovadia, Emily Fertig, Jie Ren, et al. “Can you trust your model’s uncertainty?

Evaluating predictive uncertainty under dataset shift”. In: Advances in Neural Infor-

mation Processing Systems. 2019.

[46] Dan Hendrycks, Norman Mu, Ekin D Cubuk, et al. “Augmix: A simple data process-

ing method to improve robustness and uncertainty”. In: arXiv preprint arXiv:1912.02781

(2019).

[47] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, et al. “On mixup training:

Improved calibration and predictive uncertainty for deep neural networks”. In: Ad-

vances in Neural Information Processing Systems (2019).

[48] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. “When does label smoothing

help?” In: Advances in Neural Information Processing Systems. 2019, pp. 4694–4703.

[49] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, et al. “Calibrating deep neural

networks using focal loss”. In: Advances in Neural Information Processing Systems (2020).

[50] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, et al. “Mlp-mixer: An all-mlp

architecture for vision”. In: Advances in neural information processing systems 34 (2021),

pp. 24261–24272.

[51] Andrey Malinin and Mark John Francis Gales. “Predictive Uncertainty Estimation via

Prior Networks”. In: 2018 Conference on Neural Information Processing Systems (NIPS).

2018.

179

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, et al. “Rethinking the inception

architecture for computer vision”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2016, pp. 2818–2826.

[53] Tsung-Yi Lin, Priya Goyal, Ross Girshick, et al. “Focal Loss for Dense Object Detec-

tion”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2020).

[54] M. Hein, M. Andriushchenko, and J. Bitterwolf. “Why ReLU Networks Yield High-

Confidence Predictions Far Away From the Training Data and How to Mitigate the

Problem”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2019.

[55] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift”. In: International conference on ma-

chine learning. 2015.

[56] Leda Cosmides and John Tooby. “Are humans good intuitive statisticians after all?

Rethinking some conclusions from the literature on judgment under uncertainty”. In:

Cognition (1996).

[57] Hidetoshi Shimodaira. “Improving predictive inference under covariate shift by weight-

ing the log-likelihood function”. In: Journal of statistical planning and inference (2000).

[58] Arthur Gretton, Alex Smola, Jiayuan Huang, et al. “Covariate shift by kernel mean

matching”. In: Dataset shift in machine learning (2009).

[59] Ashkan Rezaei, Anqi Liu, Omid Memarrast, et al. “Robust fairness under covariate

shift”. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021.

[60] Alexander Kirillov, Eric Mintun, Nikhila Ravi, et al. “Segment anything”. In: arXiv

preprint arXiv:2304.02643 (2023).

[61] Mingxing Tan and Quoc Le. “Efficientnetv2: Smaller models and faster training”. In:

International conference on machine learning. 2021.

[62] Lu Yuan, Dongdong Chen, Yi-Ling Chen, et al. “Florence: A new foundation model

for computer vision”. In: arXiv preprint arXiv:2111.11432 (2021).

[63] Fisher Yu, Wenqi Xian, Yingying Chen, et al. “BDD100K: A Diverse Driving Video

Database with Scalable Annotation Tooling”. In: arXiv preprint arXiv:1805.04687 (2018).

180

[64] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning”. In: international conference on machine

learning. 2016, pp. 1050–1059.

[65] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, et al. “Weight uncertainty in

neural network”. In: International conference on machine learning. PMLR. 2015, pp. 1613–

1622.

[66] Yarin Gal. “Uncertainty in Deep Learning”. PhD thesis. University of Cambridge,

2016.

[67] Yeming Wen, Paul Vicol, Jimmy Ba, et al. “Flipout: Efficient Pseudo-Independent

Weight Perturbations on Mini-Batches”. In: 6th International Conference on Learning

Representations, (ICLR). 2018.

[68] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and Scal-

able Predictive Uncertainty Estimation using Deep Ensembles”. In: Advances in Neu-

ral Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, et al.

Curran Associates, Inc., 2017, pp. 6402–6413.

[69] Corina Gurau, Alex Bewley, and Ingmar Posner. “Dropout Distillation for Efficiently

Estimating Model Confidence”. In: ArXiv abs/1809.10562 (2018).

[70] Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. “Ensemble Distribution Dis-

tillation”. In: International Conference on Learning Representations. 2020.

[71] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian Deep

Learning for Computer Vision?” In: Conference on Neural Information Processing Sys-

tems (NIPS). 2017.

[72] D.A. Nix and A.S. Weigend. “Estimating the mean and variance of the target prob-

ability distribution”. In: Proceedings of 1994 IEEE International Conference on Neural

Networks (ICNN’94). 1994.

[73] Rob Weston, Sarah H. Cen, Paul Newman, et al. “Probably Unknown: Deep Inverse

Sensor Modelling Radar”. In: 2019 International Conference on Robotics and Automation

(ICRA) (2019), pp. 5446–5452.

181

[74] Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla. “Estimating and exploiting the

aleatoric uncertainty in surface normal estimation”. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision. 2021.

[75] Ryutaro Tanno, Daniel E Worrall, Aurobrata Ghosh, et al. “Bayesian image quality

transfer with CNNs: exploring uncertainty in dMRI super-resolution”. In: Medical

Image Computing and Computer Assisted Intervention (MICCAI). 2017.

[76] David Novotny, Diane Larlus, and Andrea Vedaldi. “Learning 3d object categories by

looking around them”. In: Proceedings of the IEEE international conference on computer

vision. 2017.

[77] David Novotny, Samuel Albanie, Diane Larlus, et al. “Self-supervised learning of

geometrically stable features through probabilistic introspection”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

[78] Jochen Gast and Stefan Roth. “Lightweight Probabilistic Deep Networks”. In: 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 3369–3378.

[79] Jiawei Liu, Jing Zhang, and Nick Barnes. “Modeling Aleatoric Uncertainty for Cam-

ouflaged Object Detection”. In: 2022 IEEE/CVF Winter Conference on Applications of

Computer Vision (WACV). 2022.

[80] Terrance DeVries and Graham W Taylor. “Leveraging uncertainty estimates for pre-

dicting segmentation quality”. In: arXiv preprint arXiv:1807.00502 (2018).

[81] Robert Robinson, Ozan Oktay, Wenjia Bai, et al. “Real-time prediction of segmenta-

tion quality”. In: Medical Image Computing and Computer Assisted Intervention (MIC-

CAI). 2018.

[82] Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, et al. “A probabilistic u-

net for segmentation of ambiguous images”. In: Advances in neural information pro-

cessing systems (2018).

[83] Simon AA Kohl, Bernardino Romera-Paredes, Klaus H Maier-Hein, et al. “A hier-

archical probabilistic u-net for modeling multi-scale ambiguities”. In: arXiv preprint

arXiv:1905.13077 (2019).

182

[84] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, et al. “Toward multimodal image-to-

image translation”. In: Advances in neural information processing systems 30 (2017).

[85] Miguel Monteiro, Loıc Le Folgoc, Daniel Coelho de Castro, et al. “Stochastic segmen-

tation networks: Modelling spatially correlated aleatoric uncertainty”. In: Advances

in neural information processing systems (2020).

[86] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv

preprint arXiv:1312.6114 (2013).

[87] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional net-

works for biomedical image segmentation”. In: Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,

October 5-9, 2015, Proceedings, Part III 18. 2015.

[88] Guotai Wang, Wenqi Li, Michael Aertsen, et al. “Aleatoric uncertainty estimation

with test-time augmentation for medical image segmentation with convolutional

neural networks”. In: Neurocomputing (2019).

[89] Murat Seckin Ayhan and Philipp Berens. “Test-time Data Augmentation for Estima-

tion of Heteroscedastic Aleatoric Uncertainty in Deep Neural Networks”. In: Medical

Imaging with Deep Learning. 2018.

[90] Samuel G. Armato III, Geoffrey McLennan, Luc Bidaut, et al. “The Lung Image Database

Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed

Reference Database of Lung Nodules on CT Scans”. In: Medical Physics (2011).

[91] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclassified and Out-

of-Distribution Examples in Neural Networks”. In: International Conference on Learn-

ing Representations. 2017.

[92] Shiyu Liang, Yixuan Li, and R. Srikant. “Enhancing the reliability of out-of-distribution

image detection in neural networks”. In: International Conference on Learning Represen-

tations. 2018.

[93] Kimin Lee, Kibok Lee, Honglak Lee, et al. “A Simple Unified Framework for De-

tecting Out-of-Distribution Samples and Adversarial Attacks”. In: Advances in Neural

Information Processing Systems. 2018.

183

[94] Haoqi Wang, Zhizhong Li, Litong Feng, et al. “ViM: Out-Of-Distribution with Virtual-

logit Matching”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2022.

[95] Grant Van Horn, Oisin Mac Aodha, Yang Song, et al. “The inaturalist species classifi-

cation and detection dataset”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2018, pp. 8769–8778.

[96] Rui Huang and Yixuan Li. “Mos: Towards scaling out-of-distribution detection for

large semantic space”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2021, pp. 8710–8719.

[97] Olga Russakovsky, Jia Deng, Hao Su, et al. “ImageNet Large Scale Visual Recognition

Challenge”. In: International Journal of Computer Vision (IJCV) (2015).

[98] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, et al. “Describing textures in the

wild”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.

2014, pp. 3606–3613.

[99] Janis Postels, Hermann Blum, Yannick Strümpler, et al. “The hidden uncertainty in a

neural networks activations”. In: arXiv preprint arXiv:2012.03082 (2020).

[100] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, et al. “Spectral Normalization

for Generative Adversarial Networks”. In: International Conference on Learning Repre-

sentations. 2018.

[101] Jeremiah Liu, Zi Lin, Shreyas Padhy, et al. “Simple and Principled Uncertainty Esti-

mation with Deterministic Deep Learning via Distance Awareness”. In: Advances in

Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell,

et al. 2020, pp. 7498–7512.

[102] Joost R. van Amersfoort, Lewis Smith, Yee Whye Teh, et al. “Simple and Scalable

Epistemic Uncertainty Estimation Using a Single Deep Deterministic Neural Net-

work”. In: ICML. 2020.

[103] Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, et al. “Deterministic Neural

Networks with Inductive Biases Capture Epistemic and Aleatoric Uncertainty”. In:

arXiv preprint arXiv:2102.11582 (2021).

184

[104] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, et al. “Deep Variational Informa-

tion Bottleneck”. In: International Conference on Learning Representations. 2017.

[105] Alex Alemi, Ian Fischer, and Josh Dillon, eds. Uncertainty in the Variational Information

Bottleneck. 2018. URL: https://arxiv.org/abs/1807.00906.

[106] Kaiming He, Haoqi Fan, Yuxin Wu, et al. “Momentum contrast for unsupervised

visual representation learning”. In: Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition. 2020.

[107] Jean-Bastien Grill, Florian Strub, Florent Altché, et al. “Bootstrap your own latent -

a new approach to self-supervised learning”. In: Advances in Neural Information Pro-

cessing Systems (2020).

[108] Mathilde Caron, Ishan Misra, Julien Mairal, et al. “Unsupervised learning of visual

features by contrasting cluster assignments”. In: Advances in Neural Information Pro-

cessing Systems (2020).

[109] Richard Zhang, Phillip Isola, and Alexei A Efros. “Colorful image colorization”. In:

European conference on computer vision. 2016.

[110] Mehdi Noroozi and Paolo Favaro. “Unsupervised learning of visual representations

by solving jigsaw puzzles”. In: European conference on computer vision. 2016.

[111] Ishan Misra and Laurens van der Maaten. “Self-supervised learning of pretext-invariant

representations”. In: Proceedings of the IEEE/CVF conference on computer vision and pat-

tern recognition. 2020.

[112] Kaiming He, Xinlei Chen, Saining Xie, et al. “Masked autoencoders are scalable vi-

sion learners”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. 2022, pp. 16000–16009.

[113] Jinghao Zhou, Chen Wei, Huiyu Wang, et al. “Image BERT Pre-training with Online

Tokenizer”. In: International Conference on Learning Representations. 2022. URL: https:

//openreview.net/forum?id=ydopy-e6Dg.

[114] Bolei Zhou, Hang Zhao, Xavier Puig, et al. “Semantic understanding of scenes through

the ade20k dataset”. In: International Journal of Computer Vision (2019).

185

https://arxiv.org/abs/1807.00906
https://openreview.net/forum?id=ydopy-e6Dg
https://openreview.net/forum?id=ydopy-e6Dg

[115] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, et al. “Using self-supervised

learning can improve model robustness and uncertainty”. In: Advances in neural in-

formation processing systems (2019).

[116] Jim Winkens, Rudy Bunel, Abhijit Guha Roy, et al. “Contrastive training for im-

proved out-of-distribution detection”. In: arXiv preprint arXiv:2007.05566 (2020).

[117] Izhak Golan and Ran El-Yaniv. “Deep anomaly detection using geometric transfor-

mations”. In: Advances in Neural Information Processing Systems. 2018.

[118] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, et al. “Generative adversarial

networks”. In: Communications of the ACM (2020).

[119] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural

networks”. In: International conference on machine learning. PMLR. 2016.

[120] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear independent

components estimation”. In: arXiv preprint arXiv:1410.8516 (2014).

[121] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using

Real NVP”. In: International Conference on Learning Representations. 2017.

[122] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, et al. “Deep unsupervised

learning using nonequilibrium thermodynamics”. In: International Conference on Ma-

chine Learning. 2015.

[123] Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of the

Data Distribution”. In: Advances in Neural Information Processing Systems. 2019.

[124] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic mod-

els”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 6840–6851.

[125] Eric T. Nalisnick, A. Matsukawa, Y. Teh, et al. “Do Deep Generative Models Know

What They Don’t Know?” In: arXiv preprint arXiv:1810.09136 (2019).

[126] Jinwon An and Sungzoon Cho. “Variational Autoencoder based Anomaly Detection

using Reconstruction Probability”. In: 2015.

[127] Houssam Zenati, Chuan Sheng Foo, Bruno Lecouat, et al. “Efficient GAN-Based Anomaly

Detection”. In: arXiv preprint arXiv:1802.06222 (2018).

186

[128] Dan Hendrycks, Mantas Mazeika, and Thomas G. Dietterich. “Deep Anomaly Detec-

tion with Outlier Exposure”. In: arXiv preprint arXiv:1812.04606 (2018).

[129] Kimin Lee, Honglak Lee, Kibok Lee, et al. “Training Confidence-calibrated Classi-

fiers for Detecting Out-of-Distribution Samples”. In: 2018 International Conference on

Learning Representations (ICLR). 2018.

[130] Andrey Malinin and Mark Gales. “Reverse KL-Divergence Training of Prior Net-

works: Improved Uncertainty and Adversarial Robustness”. In: NeurIPS. 2019.

[131] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, et al. “Your classifier is

secretly an energy based model and you should treat it like one”. In: International

Conference on Learning Representations. 2020.

[132] M Gadd, D de Martini, L Marchegiani, et al. “Sense-Assess-eXplain (SAX): Build-

ing Trust in Autonomous Vehicles in Challenging Real-World Driving Scenarios”.

In: 2020 IEEE Intelligent Vehicles Symposium (IV): Workshop on Ensuring and Validating

Safety for Automated Vehicles (EVSAV). 2020.

[133] Hassan Alhaija, Siva Mustikovela, Lars Mescheder, et al. “Augmented Reality Meets

Computer Vision: Efficient Data Generation for Urban Driving Scenes”. In: Interna-

tional Journal of Computer Vision (IJCV) (2018).

[134] Oliver Zendel, Katrin Honauer, Markus Murschitz, et al. “WildDash - Creating Hazard-

Aware Benchmarks”. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2018.

[135] Christoph Schuhmann, Romain Beaumont, Richard Vencu, et al. “Laion-5b: An open

large-scale dataset for training next generation image-text models”. In: arXiv preprint

arXiv:2210.08402 (2022).

[136] Tongzhou Wang and Phillip Isola. “Understanding Contrastive Representation Learn-

ing through Alignment and Uniformity on the Hypersphere”. In: Proceedings of the

37th International Conference on Machine Learning. Proceedings of Machine Learning

Research. PMLR.

[137] Prannay Khosla, Piotr Teterwak, Chen Wang, et al. “Supervised contrastive learn-

ing”. In: arXiv preprint arXiv:2004.11362 (2020).

187

[138] Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. “Analyzing and improv-

ing representations with the soft nearest neighbor loss”. In: International conference on

machine learning. 2019.

[139] Adam Paszke, Sam Gross, Francisco Massa, et al. “Pytorch: An imperative style, high-

performance deep learning library”. In: Advances in neural information processing sys-

tems (2019).

[140] Liang-Chieh Chen, Yukun Zhu, George Papandreou, et al. “Encoder-decoder with

atrous separable convolution for semantic image segmentation”. In: Proceedings of the

European conference on computer vision (ECCV). 2018, pp. 801–818.

[141] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, et al. “Cutmix: Regularization strat-

egy to train strong classifiers with localizable features”. In: IEEE/CVF international

conference on computer vision. 2019.

[142] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, et al. “Unlearnable Examples:

Making Personal Data Unexploitable”. In: International Conference on Learning Repre-

sentations. 2021.

[143] Yuandong Tian, Xinlei Chen, and Surya Ganguli. “Understanding self-supervised

learning dynamics without contrastive pairs”. In: Proceedings of the 38th International

Conference on Machine Learning. 2021.

[144] Li Jing, Pascal Vincent, Yann LeCun, et al. “Understanding dimensional collapse in

contrastive self-supervised learning”. In: arXiv preprint arXiv:2110.09348 (2021).

[145] Pascal Mettes, Elise Van der Pol, and Cees Snoek. “Hyperspherical prototype net-

works”. In: Advances in neural information processing systems (2019).

[146] Jishnu Mukhoti and Yarin Gal. “Evaluating bayesian deep learning methods for se-

mantic segmentation”. In: arXiv preprint arXiv:1811.12709 (2018).

[147] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, et al. “Invertible residual networks”.

In: International conference on machine learning. PMLR. 2019.

[148] Bowen Cheng, Ishan Misra, Alexander G Schwing, et al. “Masked-attention mask

transformer for universal image segmentation”. In: Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition. 2022, pp. 1290–1299.

188

[149] Edward J Hu, Yelong Shen, Phillip Wallis, et al. “LoRA: Low-Rank Adaptation of

Large Language Models”. In: International Conference on Learning Representations. 2022.

[150] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. “Vision transformers for dense

prediction”. In: Proceedings of the IEEE/CVF international conference on computer vision.

2021.

[151] Zhe Chen, Yuchen Duan, Wenhai Wang, et al. “Vision Transformer Adapter for Dense

Predictions”. In: The Eleventh International Conference on Learning Representations. 2023.

[152] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural

network”. In: arXiv preprint arXiv:1503.02531 (2015).

[153] Hugo Touvron, Matthieu Cord, Matthijs Douze, et al. “Training data-efficient image

transformers & distillation through attention”. In: International conference on machine

learning. PMLR. 2021.

[154] Quentin Duval, Ishan Misra, and Nicolas Ballas. “A simple recipe for competitive

low-compute self supervised vision models”. In: arXiv preprint arXiv:2301.09451 (2023).

[155] Jishnu Mukhoti, Yarin Gal, Philip HS Torr, et al. “Fine-tuning can cripple your foun-

dation model; preserving features may be the solution”. In: arXiv preprint arXiv:2308.13320

(2023).

[156] Mahmoud Assran, Mathilde Caron, Ishan Misra, et al. “Semi-supervised learning

of visual features by non-parametrically predicting view assignments with support

samples”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision.

2021.

[157] Zhenda Xie, Zheng Zhang, Yue Cao, et al. “SimMIM: A Simple Framework for Masked

Image Modeling”. In: International Conference on Computer Vision and Pattern Recogni-

tion (CVPR). 2022.

[158] Hangbo Bao, Li Dong, Songhao Piao, et al. “BEiT: BERT Pre-Training of Image Trans-

formers”. In: International Conference on Learning Representations. 2022.

[159] Gang Li, Heliang Zheng, Daqing Liu, et al. “Semmae: Semantic-guided masking for

learning masked autoencoders”. In: Advances in Neural Information Processing Systems

(2022).

189

[160] Yuge Shi, N Siddharth, Philip Torr, et al. “Adversarial masking for self-supervised

learning”. In: International Conference on Machine Learning. 2022.

[161] Ioannis Kakogeorgiou, Spyros Gidaris, Bill Psomas, et al. “What to hide from your

students: Attention-guided masked image modeling”. In: European Conference on Com-

puter Vision. 2022.

[162] Mathilde Caron, Hugo Touvron, Ishan Misra, et al. “Emerging properties in self-

supervised vision transformers”. In: Proceedings of the IEEE/CVF international confer-

ence on computer vision. 2021.

[163] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, et al. OpenCLIP. Version 0.1.

DOI: 10.5281/zenodo.5143773. URL: https://doi.org/10.5281/zenodo.

5143773.

190

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773

	Introduction
	Motivation
	Semantics in Robotics
	Mitigating Distributional Shift
	Reduction of Distributional Uncertainty
	Estimation of Distributional Uncertainty
	To reduce or detect?

	Thesis Structure

	Introduction to Semantic Segmentation
	Semantic Segmentation Preliminaries
	The Task
	Deep Semantic Segmentation Networks
	Neural Network Training
	State-of-the-Art Methods

	Overfitting
	Calibration of Deep Neural Networks
	Calculating Calibration
	Observations of Miscalibration
	Causes of Neural Network Miscalibration

	Conclusion

	Uncertainty Estimation in Deep Learning
	Sources of Uncertainty
	Origins of Distributional Uncertainty
	Epistemic Uncertainty Estimation
	Principles for Epistemic Uncertainty Estimation
	Methods for Epistemic Uncertainty Estimation
	Discussion

	Aleatoric Uncertainty Estimation
	Learned Loss Attenuation
	Direct Error Estimation
	Generative Modelling
	Test-Time Augmentation
	Discussion

	Out-of-Distribution Detection
	Pretrained Methods
	Regularisation-Based Methods
	Self-Supervised Learning for OoD Detection
	Proxy Task Methods
	Deep Generative Models
	Use of Out-of-Distribution Data
	Discussion

	Conclusion

	Model Evaluation and Datasets
	Model Evaluation & Metrics
	Misclassification Detection
	Metrics: Definitions
	Metrics: Discussion

	SAX Semantic Segmentation Dataset
	Dataset Motivation
	Semantic Definitions
	Inclusion of multiple target domains
	Curation of the unlabelled SAX training datasets

	Other Driving Datasets
	Cityscapes
	Berkeley DeepDrive
	WildDash
	KITTI

	Learning OoD Detection from Large-Scale Datasets
	Motivation
	Contrastive Learning
	Training Data

	Proposed System Design
	Overview
	Objective Function
	Masking Label Noise
	Data Augmentation

	Experimental Setup
	Datasets
	Network Architecture

	Experiments and Results
	Data Augmentation Experiments
	Data Augmentation Results
	Objective Function Experiments
	Objective Function Results
	Data Diversity Experiments
	Data Diversity Results

	Conclusion

	Learning Uncertainty Estimation from Uncurated Domain Data
	Motivation
	Using Unlabelled Out-of-Distribution Driving Data
	Introduction to -SSL
	How to tailor self-supervised methods for uncertainty estimation?

	Preliminaries
	Segmentation via Prototypes
	Uncertainty Estimation via a Feature-Space Threshold

	Crop & Resize Data Augmentation
	Method

	Training Architecture
	Training Objective
	Calculating
	Learning E
	Learning the Task
	Preventing Feature Collapse

	Training Procedure
	Model Pretraining
	Domain-based Curriculae

	Network Architecture
	Baselines
	Evaluating uncertainty estimation on narrow target domains
	Source: Cityscapes, Target: SAX Test Datasets
	Effect of distributional shift
	Source: Cityscapes, Target: KITTI & BDD
	Source: BDD, Target: SAX Test Datasets

	Evaluating uncertainty estimation on a general target domain
	Target: WildDash

	Miscellaneous experiments
	Calculation of the optimal threshold
	Calculating thresholds across domains
	Latency Evaluation

	Qualitative Results
	Ablation Studies
	Estimating Uncertainty via Distance to Prototypes
	Importance of target domain images
	Importance of M in the training objective
	Importance of Branch Asymmetry
	Importance of Lu and Lp
	Importance of Crop-and-Resize Data Augmentation
	Importance of using hard M
	Possibility of class-wise thresholds
	The need for large batch sizes to calculate prototypes

	Conclusion

	Learning Uncertainty Estimation with Masking & Foundation Models
	Foundation Models
	Preliminaries on Foundation Models
	Foundation Models for Semantic Segmentation
	Model Distillation

	Uncertainty Estimation for Foundation Models
	Training Framework
	Uncertainty Training
	Learning Uncertainty Estimation
	Avoiding Feature Collapse

	Masked Image Modelling for Uncertainty Estimation
	Background
	Motivation
	Masking Policy

	Experimental Setup
	Network Architecture
	Network Initialisation
	Data
	Baselines

	Experiments and Results
	Different Target Domains
	Freezing E
	Comparing perturbation methods
	Freezing f

	Conclusion

	Conclusion
	Summary
	Closing Remarks

	Bibliography

