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Abstract

Given that robots take consequential actions in the real-world, it should be ensured that
their deployment, insofar as possible, is safe and trustworthy by design. Accordingly, this
thesis tackles a problem known as distributional shift, which occurs when a deep learning
system is exposed to data that is shifted from the data distribution it was trained on, and
can result in unpredictable and unintended deployment scenarios. For the task of semantic
segmentation, this thesis investigates how a system can detect when error occurs due to
distributional shift in order to prevent these dangerous scenarios.

After a discussion of both the nature of distributional uncertainty, i.e. that which causes
error due to distributional shift, and the existing literature, this thesis presents three meth-
ods that perform distributional uncertainty estimation alongside semantic segmentation for
driving data.

The first method poses the problem as a large-scale out-of-distribution detection prob-
lem, where a large-scale image dataset is used to train a segmentation neural network to
separate in-distribution and out-of-distribution training instances. The training method for
this involves a contrastive loss function and a data augmentation procedure that reduces the
difference in appearance between in-distribution and out-of-distribution instances.

The second method takes learnings from the first, in that it uses out-of-distribution train-
ing images that are inherently less distributionally-shifted from the in-distribution images,
rather than relying on data augmentation. This makes the task of separating them more
challenging, and therefore the learned uncertainty estimation more robust. For this reason,
this method is designed to use an unlabelled distributionally-shifted driving dataset and
proposes a training procedure to account for the lack of labels.

Finally, the third method combines ideas from the previous two approaches by using
both large-scale image data to learn a general feature representation and an unlabelled
distributionally-shifted driving dataset to tailor this representation to distributional uncer-

tainty estimation for driving images.
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Chapter 1

Introduction

Contents
M1 Motivation|. . . . . . . ... . e 9
1.2 Semanticsin Robotics| . . . .. ... . ... ... ... .. . 0L, 10
[L.3  Mitigating Distributional Shift . ........................ 11
[1.3.1 Reduction of Distributional Uncertainty . . . . .. ... ........ 11
[1.3.2  Estimation of Distributional Uncertainty| . . ... ........... 12
133 Tor I 4 13
1.4 ThesisStructurel . . ... ... ... .. .. ...t 13

1.1 Motivation

Robots take actions in the real-world, and so it is of paramount importance that the safety
of their deployment is carefully considered. One way of doing this uses the concept of
an Operational Design Domain (ODD), which defines a set of operating conditions under
which a robot has been designed and empirically shown to operate safely [1].

More and more, robotic systems are being designed to make use of deep learning, where
complex tasks can be learned directly from training data. This includes perception tasks [2]-
[4], planning tasks [5]-[7], control tasks [8]-[10], or the entire system from perception to ac-
tion [11]-[13]]. Deep learning systems typically achieve their best task performance for input

data that is similar to the training data. Therefore, in order to deploy a system, we prepare



a training dataset from the operating conditions in the ODD, and empirically evaluate the
robot in these conditions to make sure performance is sufficient.

However, if we consider deploying a robot into a dynamic real-world environment, there
is no guarantee that these operating conditions remain constant for the duration of the de-
ployment. For example, in outdoor settings, weather may change, the sun may come out,
the street furniture may be modified, never-before-seen dynamic objects may appear etc.
This causes a distributional shift of the data input to the system, and can lead to dangerous
and unpredictable robot behaviour unless mitigated.

One option to mitigate this is to extend the ODD to include each of these additional
factors of variation. However, preparing a dataset of this kind is inherently difficult for
dynamic and diverse environments.

Therefore, this thesis investigates the alternative option of designing a system that has a
strong sense of the boundaries of its ODD, and is able to detect when it is no longer operating
within it. The focus of this thesis is constrained to the important perception task of semantic

segmentation of RGB images, in which every pixel is assigned to a semantic class.

1.2 Semantics in Robotics

It is vital for a robot to have not just a geometric, but a semantic understanding of its sur-
roundings. To appreciate this, we will describe the importance of semantics in three basic
steps of robot operation.

Firstly, robots must understand where they are in the environment. Semantics are useful
for this as they provide a high-level description of a scene. This can be used to determine
which objects are dynamic or ephemeral, and which objects are static and permanent. The
latter are the elements to focus on to solve the problems of localisation and odometry, while
the former introduce noise and uncertainty to these problems, as discussed in [14]. Addi-
tionally, describing a scene in terms of high-level semantics is more memory efficient than
using appearance-based methods, resulting in smaller maps and lower cost localisation, e.g.
[15].

Secondly, robots need to plan a path towards a goal location. Traversing man-made en-

vironments often involves following rules, such as staying within lane markings, following
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traffic signs or sticking to the pavement. These rules require the extraction of semantic infor-
mation from the static world, such as performed in [16]-[19]. On the way to a goal location,
detecting dynamic objects is a key step in obstacle avoidance, and can be aided by the delin-
eation between semantic objects, such as in [20], [21].

Thirdly, once the robot has reached its location, it has to perform a task. Most tasks that
we might want robots to perform are best defined in terms of higher-level semantics, rather
than geometry, e.g. pick the apples in an orchard [22], detect people in a search and rescue
setting [23], clean the dirt on the floor in an office environment [24]. Therefore, identifying
semantic entities is often a necessary step in solving the task of interest.

For these reasons, it is a key robotics task to localise task-relevant semantic classes within
images. Therefore, this thesis considers the task of semantic segmentation, which assigns a
class to each pixel in an image. This thesis focusses on this task in the context of autonomous

driving, and how it might be solved with a consideration of its safety-critical nature.

1.3 Mitigating Distributional Shift

As introduced in Section [1.1} it is vitally important that distributional uncertainty —i.e. that
which causes errors due distributional shift — does not lead to dangerous unknown or un-
intended scenarios. Consequently, one or both of the following steps ought to be taken: (1)
the distributional uncertainty is reduced, (2) the distributional uncertainty is detected, and

risk-mitigating measures are taken.

1.3.1 Reduction of Distributional Uncertainty

Reducing the distributional uncertainty is equivalent to increasing the breadth of the safe
operating conditions defined in the ODD. This can be achieved by collecting and annotating
a larger and more diverse training dataset for the segmentation model. However, to ensure
safe deployment, this labelled dataset needs to be an approximation of any and all of the
possible scenes that the robot is likely to come across during a deployment. The scale of
this dataset would therefore be vast, and so would the resource cost be. For example, the

annotation and quality control for a single image of the Cityscapes dataset [25] took 1.5
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hours, meaning the entire dataset of 5000 images took 7500 hours, or 312.5 days to annotate.

An alternative solution to the problem is domain adaptation. In this framework, there is
a labelled dataset from one domain, named the source domain. There is also another dataset
of unlabelled images or a small number of labelled images from a distributionally-shifted
domain, named the target domain. The domain adaptation task is to train on data from both
the source domain and the target domain, in order to reduce the error rate on a test dataset
in the target domain. Suppose the source domain is defined by images inside the ODD,
and the target domain is a set of images of scenes outside of the ODD. There are methods
that exist to train on an unlabelled target domain dataset [26]—[29], which in this case would
extend the ODD.

Lastly, an increasingly prevalent method for reducing distributional uncertainty is to
initially train a model on a very broad distribution of unlabelled natural images using Self-
Supervised Learning (SSL), as demonstrated in [30]-[32]. This model can subsequently be

leveraged to solve a range of computer vision tasks on a range of different datasets.

1.3.2 Estimation of Distributional Uncertainty

Alternatively, instead of extending the ODD, a robot can detect its limits by performing
distributional uncertainty estimation. As we are interested in the pixel-wise task of semantic
segmentation, we are also interested in pixel-wise distributional uncertainty estimation, i.e.
detecting pixels that are incorrectly segmented due to distributional shift.

When a robot system detects an image region which is unknown and incorrectly seg-
mented, it is then given the opportunity to improve the safety of the system by dealing
with this event appropriately. As an example, if this image region overlaps with the robot’s
planned trajectory, then it can decide to perform a risk-minimising manoeuvre (e.g. smoothly
coming to a stop) and hand-over to a human operator. Therefore, if a robot is forced out of its
ODD, it can ‘fail gracefully’, and can be prevented from making decisions using an incorrect

understanding of its surroundings.
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1.3.3 To reduce or detect?

This thesis focusses on the estimation of distributional uncertainty, but ultimately both ap-
proaches are important research directions, as they reduce the error rate in orthogonal man-
ners. The justification for the focus of this thesis is based on the fact that distributional
uncertainty cannot currently be fully reduced, and perhaps never will be for all settings.

Due to the recent advent of foundation models in computer vision [30], [31], it is increas-
ingly possible to train models to accurately perform computer vision tasks on an extremely
broad distribution of images. However, we suggest that there will still be utility in specialist
models trained to perform well on specific image domains. This could be true for reasons of
(1) accuracy, i.e. models fine-tuned on a specific image domain outperform models trained
on all images, or (2) inference cost, i.e. smaller neural networks use less memory and have
a lower latency, but are less expressive and so only perform well on a subset of all natu-
ral images, or (3) training cost, i.e. training on large datasets is time-consuming and costly,
therefore smaller or more specialist models have utility in these settings.

In these contexts, these smaller or more specific models have no need to be able to per-
form their task for the entirety of the natural image distribution, and therefore high-quality
uncertainty estimation will be a key driver of their safe deployment into the world.

A second reason is that it is likely to be easier to detect distributional uncertainty than
reduce it, as will be discussed further in Section [3.2]and Section 5.1 Broadly, this is because
detecting distributional uncertainty requires the model only to discriminate between the
classes within the ODD, and those outside of it. Crucially, it removes the requirement to
discriminate between each of the semantic classes that are not within the ODD, and thus

this task is less complex than reducing distributional uncertainty.

1.4 Thesis Structure

This thesis is about taking steps to solve: the estimation of distributional uncertainty to
mitigate the effects of distributional shift on the task of semantic segmentation for mobile
robotics . This is achieved by proposing three methods, which are presented in Chapter|5,

Chapter|6|and Chapter 7} as well as in the following publications:
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e D. Williams, M. Gadd, D. De Martini, and P. Newman, “Fool Me Once: Robust Selec-
tive Segmentation via Out-of-Distribution Detection with Contrastive Learning”, IEEE

International Conference on Robotics and Automation (ICRA), 2021.

e D. Williams, D. De Martini, M. Gadd, and P. Newman, “Mitigating Distributional Shift
in Semantic Segmentation via Uncertainty Estimation from Unlabelled Data”, IEEE

Transactions on Robotics (T-RO), 2024.

¢ D. Williams, M. Gadd, P. Newman, and D. De Martini, “Masked ~-SSL: Learning Un-
certainty Estimation via Masked Image Modeling”, IEEE International Conference on

Robotics and Automation (ICRA), 2024.

As will be discussed throughout this thesis, the thread that ties these methods together
is that they each seek to learn distributional uncertainty estimation directly from out-of-
distribution (OoD) training data, however they are tailored to use different types of training
datasets to achieve this.

Before these methods are presented, Chapter 2, Chapter 3|and Chapter |4 provide crucial
background information on the task of interest, and this ultimately motivates the methods
in the later chapters.

Chapter[2|introduces the task of semantic segmentation, the deep learning methods used
to solve it, and the notation used in this thesis. It then discusses the effect of distributional
shift of these methods, and the concept of neural network miscalibration, which limits these
methods’ ability to detect distributional shift. Finally, it discusses the implications of mis-
calibration in the context of safety-critical robotics.

Chapter [3| firstly investigates the nature of distributional uncertainty, and contributes a
useful framing of it. The existing literature related to distributional uncertainty estimation,
namely uncertainty estimation and OoD detection, is then presented. The discussion of this
literature is conditioned on this chapter’s framing of distributional uncertainty, as well as
the constraints of mobile robotics. The chapter concludes with a discussion of the themes of
research that will be found in our proposed methods in Chapter 5| Chapter|6|and Chapter |7}

Chapter 4| discusses the datasets and model evaluation strategies used in this thesis, with
a focus on our mobile robotics setting. This includes a dataset that has been developed over

the course of this thesis, for the specific problem of measuring the quality of distributional
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uncertainty estimation across a range of magnitudes of distributional shift. This chapter
also introduces misclassification detection, which is the task used to measure the quality of
uncertainty estimation.

Chapter 5 introduces the first of our proposed methods, where the training task is for-
mulated as a large-scale pixel-wise OoD detection problem. The key contributions are: (1) a
training algorithm that uses contrastive learning to leverage a large-scale image recognition
training dataset, (2) a data augmentation technique that combines in-distribution and OoD
instances within the same images, and reduces the distributional shift between the OoD
dataset and the in-distribution dataset, allowing for more pixel-wise robust OoD detection.

Next, Chapter [f| presents the second of our proposed methods. Instead of using a large-
scale image recognition dataset as in Chapter [5, this work instead uses a dataset that is
distributionally shifted from the source domain, but is still real-world driving data. This is
because this type of dataset naturally contains in-distribution and OoD instances within the
same image, and the OoD instances are more subtly different. This choice, however, brings
many challenges as there is no supervision provided by this dataset. The key contributions
of this chapter are: (1) a training algorithm that uses unlabelled target domain data to learn
distributional uncertainty estimation, (2) an extensive set of experiments that evaluate the
quality of uncertainty estimation for a wide variety of benchmarks.

Finally, Chapter [7| presents the last of our proposed methods. This uses a similar formu-
lation to the previous chapter, but introduces the use of foundation models, which emerged
over the course of this thesis. In this sense, this method uses a large-scale image recogni-
tion dataset in addition to the distributionally-shifted driving dataset used in the previous
chapter. The key contributions for this work are: (1) a framework for fine-tuning a founda-
tion model to solve a specific task, while also learning to maintain generality for uncertainty
estimation (2) a method using masked image modelling, instead of the data augmentation
used in Chapter|f to train a fine-tuned segmentation network to perform uncertainty esti-
mation without the requirement for ground-truth, (3) an empirical investigation on the effect
of foundation model pre-training on quality of uncertainty estimation.

Finally, Chapter [§| summarizes the contributions of this thesis.
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Chapter 2

Introduction to Semantic Segmentation

Contents
2.1 Semantic Segmentation Preliminaries| . .................... 17
A1 TheTaskl . . .. ... . 17
2.1.2  Deep Semantic Segmentation Networks|. . . . .. ... ........ 17
2.1.3 Neural Network Training . . . ... ... ... ............. 18
-of-the-Art Methods| . . . ... ... ... ... ... ... 19
22 Overfitting . . . . . . . . .o i i e 21
2.3 Calibration of Deep Neural Networks| . . ................... 22
2.3.1 Calculating Calibration| . . . ... ... ................. 23
3.2 rvations of Miscalibration| . . . . . .. ... ... . .. 0L 24
f ral rk Miscalibration . . . . . ... ... ... .. 25
2.4 NCUSION . . . o o it e e e e e e 28

This chapter introduces the task of semantic segmentation, the current methods used to
solve it, and the limitations of these methods for robots operating in diverse and dynamic
environments. In Section [2.1} the notation to be used throughout this thesis is presented,
along with detail about how deep segmentation networks are designed and trained. Sec-
tion [2.2] discusses how large neural networks are prone to overfitting and Section [2.3| de-
scribes the concept of calibration and the empirical findings of neural network miscalibra-

tion. The chapter ends with Section|2.4} which discusses the implications of neural network
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calibration when deep semantic segmentation networks are used as components of robotic

systems.

2.1 Semantic Segmentation Preliminaries

2.1.1 The Task

Semantic segmentation of RGB images is a task that requires the estimation of the semantic
class of every pixel in an image. We firstly define a set of K semantic classes, K = {ky, ... kx},
that are of interest for a given setting. These classes are then visually defined using N natural
RGB images, X € RYV>3*H>xW with corresponding pixel-wise labels Y* € RY*#*W regulting
in a dataset D = {X,Y"*}.

The semantics are encoded in a given label y* C Y™ by assigning each pixel to the index
of the semantic class, y* € {n € Z | 1 < n < K}**W_ The dataset D jointly defines which
classes are of interest, and the appearance they take.

For a given RGB image x € R**#*W the semantic segmentation task is to return a seg-
mentation map,y € {n € Z |1 <n < K}*W which is identical to the corresponding label

yie{neZ|l<n< KW,

2.1.2 Deep Semantic Segmentation Networks

Semantic segmentation performance has increased enormously over the last decade due to
the application of deep learning to the problem. The availability of large pixel-wise anno-
tated datasets, innovation in neural network architectures, and decrease in cost of parallel
compute has made this possible.

Therefore, a typical solution to the semantic segmentation problem is to train a neural
network fy, which is parameterised by 0. A segmentation neural network f, typically re-
turns unnormalised log-probabilities for each pixel and each class, which are referred to as
logits, 1 = f45(x) € RE*#*W_ From this, we can obtain the estimated segmentation map via
y = argmax(1).

Additionally, we might also want to consider the per-pixel categorical distribution p €

[0, 1]E*HXW " For a pixel location i, pixel value x = x; € R? and pixel-wise segmentation
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y = y; € R!, this distribution is given by p; = p(y|z) € [0,1]¥. Note that in truth, the
categorical distribution for a given pixel is conditioned on the entire input image, so should
be represented as p = p(y|x), however p(y|z) is used for the sake of simplicity. This is

expanded as:

pi = p(ylz) = Ip(y = kilx), ..., p(y = ki l|z)] € [0,1]" (2.1)

This is typically calculated as:
p(y|z) = softmax,(1;) = softmax,([L; 1,...,L x]) (2.2)

This is using the softmax function softmax, which can be calculated for a given tempera-

ture 7 as:

softmax,(z;) = exp(*//7) (2.3)

> exp(e/r)

If the subscript 7 is omitted, then assume that 7 = 1.

This is of great interest to this thesis, as p(y|z) communicates the degree of certainty with
which a given pixel is assigned a class by either considering its entropy, where entropy is
higher for less certain estimates, or via the max softmax score, pm.x = max[p(y|x)] which

represents the model’s confidence, for which higher values indicate lower uncertainty.

2.1.3 Neural Network Training

For supervised semantic segmentation training, we have a labelled training dataset D =
{X,Y*} where an image-label pair can be sampled as the n™ element: (x,y*) = (X,,,Y}),
where x € R*>***W and corresponding pixel-wise labels y* € {n € Z | 1 <n < K}#*W.

A given segmentation network with parameters 6, is represented by the function f4. The
model parameters can be estimated by using Maximum Likelihood Estimation (MLE), such
that the likelihood of the observed data is maximised.

The likelihood function is defined as:

In practice, we maximize the log-likelihood, which turns products into sums and is nu-
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merically more stable. This is made possible as log is a monotonically increasing function,

and so the optima of g are the same as that of log (g).

N HxW

log L(0; D) = ZZlogpy]xH

n=1 =1

This is ultimately equivalent to minimising the cross-entropy loss, H, where H|[p, q| =
— > qlog(p) and ¢ represents one-hot encoded labels.

Therefore the parameters can be estimated by minimising:

=>_ > ¥ logp(ylr) (2.4)

Where §* € {0,1}* is the one-hot encoded label for a pixel location i, §* = y;, where
y* € {0, 1}xHxW Using L, the parameters ¢ are updated iteratively using a variant of

stochastic gradient descent:
0L

0%9—0480

where « is the learning rate, and 2% is the gradient of the loss with respect to .
An illustration of this method can be seen in Figure 2.1, in which a 2D toy problem
is solved using a linear model, in contrast to the higher-dimensional problem of semantic

segmentation of RGB images, solved with a significantly more expressive non-linear models.

2.1.4 State-of-the-Art Methods

The primary aspects of a method for maximising semantic segmentation performance is to
use as large and diverse a labelled training dataset as possible, in conjunction with a large
and expressive deep semantic segmentation network.

There has been considerable innovation in the field of neural network architectures used
for semantic segmentation. Typically, an encoder-decoder network architecture is used. An
encoder E, : R¥>*H>*W _ RFxhxw embeds an image as a feature map of high latent dimension
F and smaller spatial dimensions (h,w). The decoder Dy : RF>*m>w — REXHXW then trans-
forms this feature map into per-pixel unnormalised log-probabilities, i.e. the logits. Overall,

we have 1 = Dy o Ey(x), where o represents the function composition operator.
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Figure 2.1: A toy problem for which a multi-class logistic regression model is trained with
maximum likelihood estimation. Each class probability is plotted separately, along with the
decision boundaries and the model confidence, pmax.

The differences in semantic segmentation methods often relates to differences in the de-
sign of Eg and Dy. The first approaches of this type used fully-convolutional networks [33],
which adapted image classification networks by removing the flattening and multilayer per-
ceptron (MLP) layers. More recently, the encoder has been chosen to be the best-performing
encoder for supervised, or self-supervised image classification. This is because in image clas-
sification, the semantic object of interest could exist across many scales, and be anywhere in
the image, therefore the encoder must extract high-level semantic features from across the

entirety of the image. This is evidenced by top-performing segmentation networks [33],
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[34 being initialised with the encoder weights from classification networks trained on the
ImageNet.

For many years, the best-performing image classification networks and semantic seg-
mentation networks were based on the ResNet encoder [35] architecture. Currently, SOTA
encoders are now variants of the Vision Transformer (ViT) architecture [36], which applies
the Transformer architecture [37], which originates from the Natural Language Processing
(NLP) community, to computer vision. As for decoders, there are a great number of possible
choices [38]-[40], and the decision made in each our presented methods are described in

their relevant chapter.

2.2 Opvetfitting

The parameters 6§ of £, define a hypothesis space of functions, each of which are a possible
solution to a problem. Supervised training on a labelled training dataset via a suitable op-
timisation technique, e.g. stochastic gradient descent, allows us to search this hypothesis
space for the optimal function £} for the task at hand.

Given that the labelled training dataset is inherently a limited representation of the data
distribution of all possible images, £y typically learns a bespoke function which is optimal
only for this set of images. This means that even if the test images come from the same
data distribution as the training images, the loss and error rate will be higher on these test
images, as they do not belong to the training set. In Figure 2.2} the problem of overfitting is
illustrated by presenting two models, which are optimised using different sets of data.

As described in Section[2.1.4) £, is typically a very expressive neural network with a large
number of parameters. This means that the hypothesis space of functions is very large, and
it has often observed that this readily leads to overfitting, as shown in [41], [42].

A variety of methods can be used to prevent this, such as regularisation and use of vali-
dation data for early stopping. It is nonetheless inevitable when we perform empirical risk
minimisation (i.e. choosing the model that has the lowest loss on the provided data), that £}

will only be optimal for a subset of all possible data.

!Both Fully-Convolutional Networks [33] and Mask R-CNN [34] were state-of-the-art (SOTA) methods
upon publishing in 2015 and 2018 respectively.
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Figure 2.2: Two models illustrating the problems of overfitting. In (a) a logistic regression
model is trained to maximise the likelihood of the training data. In (b) another logistic
regression model is trained to maximise the likelihood for all data, demonstrating what an
optimal model looks like. In contrast to (b), the model in (a) is optimal only for the training
data, and not the test data which belongs to the same class, but is differently distributed.
This illustration shows that models trained with maximum likelihood estimation are biased
towards only being optimal on the provided data, and thus prone to overfitting.

There are two possible ways in which the loss can be high on unseen data, it can either
relate to (1) confident but incorrect class assignment with low entropy and high p.x, o1 (2)
ambiguous class assignment, i.e. high entropy and low p.,... The former is a safety con-
cern, as without labels this is indistinguishable from confident and correct class assignment.
However, the latter provides us with information about the limits of the ODD. The rela-
tionship between a network’s py.x and accuracy is the topic of model calibration, which is

discussed in the next section.

2.3 Calibration of Deep Neural Networks

A neural network’s calibration refers to how model confidence p,,.x correlates with accuracy.
It is desired that the confidence is lower when the model is less accurate, and higher when
the model is accurate. This is illustrated in Figure 2.3 where a well-calibrated model and a

poorly calibrated model are presented.
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It has been shown in many experiments [43]-[45] that, for the task of classification,
the calibration of many neural networks is poor for both independent and identically dis-
tributed (i.i.d.) and OoD data. Given that most methods treat semantic segmentation as a
pixel-wise classification problem, these findings directly carry over to our problem of inter-
est.

Firstly, Section|2.3.1|describes how calibration is formally measured. Then in Section[2.3.2]
we will discuss the empirical findings in the literature, and then possible causes in Sec-

tion 2.3.3] Finally, Section|2.4|discusses miscalibration in the context of robotics.

2.3.1 Calculating Calibration

In order to measure the calibration of a segmentation network fy, we firstly use f, to segment
a set of N images, Y = £4(X) where Y € {1,..., K}V>*IXW X ¢ RNV3HXW  We then

split the predictions into M bins based on the confidence of the predictions, P,.x = max o

softmax o fy(X), such that the bins By.); contain predictions with confidence [0 : ﬁ, % :
2 ..., 2=1:1]. The accuracy and confidence is then calculated for each bin:
NKIIW
M
2.
Conf(B,, NHW [Prax)i (2.6)

Finally, the model’s calibration can by evaluated with the expected calibration error,

ECE, as seen in [43], [44]:
M
_ _ 2.7
ECE i mgl |Acc(B,,) — Conf(B,,)] (2.7)

This means that the model calibration will be high when the model’s confidences broadly
correlates with the model’s accuracy. Note that this does not directly measure if the model
confidence for a single pixel can be used to estimate the model’s accuracy for that pixels, but,
in contrast with metrics presented later in this thesis, it takes a broader and more statistical

view.
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Figure 2.3: In this figure, two MLPs are depicted as being trained to similar accuracies on
the training data. In (a), the model is well-calibrated as it misclassifies a cluster of test data
in the top left, however it is also has low confidence about this classification, and therefore
confidence is predictive of accuracy. However in (b), the model similarly misclassifies the
top-left cluster of test data, but it is as confident about this inaccurate classification as it is
for accurate classifications.

2.3.2 Observations of Miscalibration

In ﬂﬁ[l, it is empirically determined that the calibration of moderrﬁ neural networks is very
poor compared with the older smaller networks for classification tasks. Calibration is mea-
sured on test datasets that are i.i.d. with respect to the training dataset, and over-confidence
is consistently observed for a number of different classification network architectures. This

shows that MLE pushes up the probability mass for the training examples, resulting in high

2modern as described in 2017

24



Pmax Values, but it also increases the probability of unseen examples resulting in poor cal-
ibration. A great number of works (e.g. [43], [46]-[49]) make similar observations when
testing on i.i.d. data.

There are also a number of different works that test the calibration of neural networks on
OoD test data. In this setting, model accuracy will likely drop significantly between training
and testing, and so the question is therefore: to what extent is there also an appropriate
drop in model confidence? In a broad set of experiments, [45] shows that the calibration of
neural networks becomes poorer as distributional shift increases. This is also not mitigated
by tuning the temperature parameter in the softmax function on an i.i.d. validation dataset,
such that the mean confidence on this data equals the mean accuracy. This implies either
that the network cannot detect OoD instances or that it can, but ignores this information in
the calculation of pyax. As a result, ranking pixels by their p,.. value is not an effective
method for detecting error due to distributional shift. This observation is corroborated by
the findings in [44], which experiments over different classification tasks and a large range
of recent neural network architectures (e.g. Vision Transformers [36], ResNet variants [35],
non-convolutional MLP Mixers [50]).

For classification, and therefore pixel-wise classification, the fact that p,,.x is a poor es-
timator of the decrease in accuracy due to distributional shift is a key motivator for the

methods presented in this thesis.

2.3.3 Causes of Neural Network Miscalibration

For the task of classification (and therefore also for pixel-wise classification), there are a

number of possible factors that are suggested to contribute to neural network miscalibration.

Effect of the Cross-Entropy Objective

We can reason about the effects of the cross-entropy objective on model miscalibration in

the following way. If a neural network is estimating p(y|z) via the softmax function, then

plyjlz) = %. The targets are one-hot encoded labels, and so to fully minimise the

cross-entropy, it is required that either exp(/;) tends to infinity, or > exp(l;) tends to

keK, j#k
zero. This means that for a correctly classified image, the neural network can best reduce
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the loss by outputting logits values [; with very large magnitudes (positive for the logit cor-
responding to the correct class, and negative for the rest). For incorrectly classified images,
the neural network should produce a high entropy p(y|z) to minimise the loss, as the loss
increases the more confident an incorrect class assignment is. This can be achieved with
logits that can be large or small, as long as they are roughly equal due to the ‘translation in-
Varianceﬁ of the softmax function, discussed in [51]. This incentive for the model to produce
large logit values leads to miscalibration.

As a result of this reasoning, the motivation of [48], [49], [51] is to address the effect of
the cross-entropy objective by proposing alternative objective functions. Label smoothing
is proposed in [52] where the model is optimised to minimise the cross-entropy between
p(y|z) and the one-hot labels, but also to minimise the distance between p(y|z) and the uni-
form distribution. The effects of this for calibration are described in [48]. The focal loss,
originally proposed in [53]], can be used in a similar manner, as described in [49]. The lat-
ter also discusses how using only the cross-entropy objective leads to weight magnification,

and suggests regularisation as a way to mitigate this problem.

Effect of Model Size and Architecture

In [43], large model capacity is cited as a driver of miscalibration when used in conjunction
with the cross-entropy loss. Typically, large expressive neural networks will achieve a high
accuracy on the training set, and so there will be a particularly large bias in the logit distri-
bution towards very large logit values. [43] reports that while the higher capacity models
have a better test accuracy and so generalise better in terms of accuracy, they do not in terms
of calibration.

The testing in [43] is performed on in-distribution data exclusively, but [44] investigates
the calibration of large models for in-distribution and OoD, in addition to using more recent
image classification backbones, such as Vision Transformers [36] and MLP Mixer [50].

The findings in [44] corroborate the findings in [43], in that the calibration of higher
capacity models on in-distribution data is worse than lower capacity models. It shows that
this is also the case is you use temperature scaling to calibrate the mean confidence value on

validation data. It, however, shows that higher capacity models perform better in terms of

3i.e. softmax(z) = softmax(z + &), therefore the values are determined by relative, not absolute, magnitude.
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calibration on OoD data.

It is worth noting that in [44], all models were pretrained on large diverse datasets, be-
fore being fine-tuned in a supervised manner on ImageNet. Therefore, both the training and
pretraining expose the models to a large diversity of natural images, which acts as a regu-
lariser. This is in contrast to training or fine-tuning large capacity models on less diverse
datasets, e.g. driving datasets, and therefore these reported results are relevant primarily
for large-scale image recognition tasks.

Another finding of [44] is that neural network architecture had an effect on model cali-
bration when adjusted for model capacity and the extent of model pretraining. Vision trans-
formers and MLP Mixers tended to be more calibrated than convolutional architectures,

such as ResNet-based architectures.

Effect of Activation Function

[54] suggests that another factor which contributes to miscalibration on OoD data is the
Rectified Linear Unit (ReLU) activation function. This choice of activation function produces
piece-wise linear decision boundaries, which produce polytope in feature space assigned
to each class. They describe how this results in the possibility of yielding features assigned
to a known class, but which are infinitely far away from the training data. Therefore, if a
OoD data point is represented as very dissimilar to the training data, it is possible for it to be
assigned a large logit value for one of the classes, and therefore to be very confidently and

incorrectly classified.

Other possible factors

In addition to discussing the cross-entropy objective and large model capacity, [43] also cites
batch normalisation [55] and a lack of weight decay as causes of miscalibration.

Batch normalisation is designed to ensure that, during training, each batch of extracted
features are similarly distributed. During evaluation, the running mean and variance calcu-
lated during training are used to normalise each feature map. By reducing the spread of the

features, it is possible that images that have a strong appearance change from the rest of the

*A polytope is a N-dimensional extension of a polygon.
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training dataset, and thus would benefit from lower confidence, are represented similarly to
the prototypical class images, for which a high confidence is appropriate. In this way, it is
conceivable that batch normalisation contributes to assigning high confidences to almost all
inputs.

[43] describes that increasing weight decay improves model calibration, and yet de-
creases test accuracy. For this reason, it describes how weight decay is increasingly not
used to the detriment of model calibration. In the experiments in both [43] and [49], it is
shown that neural networks with smaller weight magnitudes are better calibrated, with the

latter performing implicit weight regularisation with the focal loss.

2.4 Conclusion

In this thesis, our objective is to design deep semantic segmentation networks that are suited
to being components of robotic systems. Therefore, the neural networks must be able to
detect when they are within their ODD, and thus have a sufficiently high level of accuracy
for safe autonomous operation.

For this reason, the increasing miscalibration of neural networks due to distributional
shifts is a great concern. It also appears that, in many experiments, this is a problem not of
scale but of ranking. This means that model confidence is not miscalibrated on OoD data
because the mean confidence is inappropriate, but the ranking of pixels by confidence does
not relate to the likelihood of accurate classification, and therefore simple scaling fixes such
as adjusting the softmax temperature are not sufficient. It is therefore of great importance for
us to investigate methods that allow for higher quality estimation of predictive uncertainty,
such as seen in the epistemic uncertainty estimation and OoD detection literature. This will
be investigated in detail in the next chapter.

In addition to robotic systems needing to understand their limits to facilitate safe op-
eration, it is also important that robotic systems are trusted by the humans they interact
with. One way of doing this is to perform accurate uncertainty estimation, and report these
estimates to humans. Humans are typically able to interpret probabilities on an intuitive
level [56], and, if the model predictions are matched with appropriate levels of model confi-

dence, then this can build trust between humans and the systems they share environments
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with, or are being serviced by. Trust is a key ingredient in the adoption of robots in the
setting of personal transport due to its safety-critical nature, and so the reporting of high
quality uncertainty estimates is an important research direction for this reason alone.

In Chapter [3| we therefore describe the different types of uncertainty, effective methods

for their estimation, and how these relate to our mobile robotics setting.
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Uncertainty Estimation in Deep Learning
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The conclusion of Chapter[2is that deep segmentation networks are not inherently good
at detecting distributional shift, and that this is a problem for mobile robotics applications.
For this reason, this chapter presents and discusses the different methods that have been
developed to mitigate this problem, spanning the fields of uncertainty estimation and OoD
detection.

Firstly, Section [3.1|introduces a dichotomous framework for thinking about uncertainty,
by splitting it into aleatoric and epistemic. This is important as much of the uncertainty
estimation literature frames its work in these terms. Secondly, Section [3.2] discusses how
distributional uncertainty fits into this framework.

Then, for the rest of the chapter, the themes and methods for epistemic uncertainty es-
timation, aleatoric uncertainty estimation, and OoD detection are presented. Each are dis-
cussed both for their broad suitability for mobile robotics, and with reference to the discus-
sion in Section

Finally, in Section [3.6] the most promising themes are discussed in more detail. These

themes are key influences on the methods presented in Chapter[5|, Chapter 6| and Chapter|7}

3.1 Sources of Uncertainty

Error in computer vision tasks is often presented as originating from two sources of uncer-
tainty: aleatoric and epistemic. Epistemic uncertainty (related to the Ancient Greek, episteme,
for knowledge), is uncertainty that is theoretically under the control of the modeller (i.e. the
person designing the model) and can be reduced by decisions in the model design. Under
this definition, if only epistemic uncertainty exists, then the following is true: there theoret-
ically exists a model architecture defined by £*, which can be trained by a optimal dataset

and optimiser to yield parameters ¢*, such that the trained model f reduces the test error

1Strictly, this should be £}., as both the architecture and the parameters are optimal, however £}, is used for
simplicity of presentation.
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to zero. For this reason, epistemic uncertainty is due to the suboptimality of the model and
its parameters rather than the input data, and can be reduced by an improved training pro-
cedure, such as a more diverse training dataset, better network architecture, better optimiser
etc.

In contrast, aleatoric uncertainty is uncertainty than cannot be reduced by the mod-
eller. Etymologically, aleatoric is related to the Latin, alea, for dice, bringing up the idea
that aleatoric uncertainty causes error due to the inherent randomness of the observations,
rather than imperfections in the model.

This means that no combination of model, dataset, optimizer can reduce the error on the
test dataset to zero. In outdoor robotics, examples of sources of aleatoric uncertainty include:
noise from the sensor, environmental factors such as fog or darkness, lack of resolution of
objects in the distance, sensor adherents such as rain, snow, or smudges on a camera lens.

The distinction between the types of uncertainty is important for two reasons. Firstly,
knowledge of the uncertainty type should be used to design the method for its estimation,
e.g. if uncertainty primarily originates in the data, then a method should focus its atten-
tion on the data and not the model parameters. Secondly, since epistemic uncertainty is
reducible, estimating it for a dataset of unlabelled images gives the modeller information
about which images to use to improve the model’s accuracy, for example by labelling them
and then training on them. Therefore, estimating epistemic and aleatoric uncertainty sepa-
rately can be useful in an active learning setting to find training examples that are maximally
informative, i.e. those that have high epistemic uncertainty and low aleatoric uncertainty.
The latter is important as images with high aleatoric uncertainty are, by definition, uninfor-

mative, and thus cannot improve the model’s accuracy.

3.2 Origins of Distributional Uncertainty

We have presented a dichotomous framework which defines uncertainty as being either
reducible or irreducible by the modeller. As described in Chapter [1, we are interested in
estimating distributional uncertainty, and so it is worth determining how distributional un-
certainty fits into this framework.

In the context of semantic segmentation, distributional uncertainty can derive from two
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components: (1) uncertainty due to an instance of an unknown class, i.e. a class not defined
in the labelled training dataset (2) uncertainty due to an instance of known class, but with
an appearance distinct from the instances of the same class in the labelled training dataset,
often called covariate shift [57]-[59].

Theoretically, it can be concluded that distributional uncertainty is epistemic. This is
because it is theoretically possible to design a model that can segment all possible presenta-
tions of all possible semantic classes, represented in Figure[3.1a] A dataset could be collected
that contains diverse presentations of each of the finite number of semantic conceptsﬂ Then,
a sufficiently expressive neural network architecture could be defined with an appropriate
optimizer, and this model could be trained such that the segmentation error on any possible
test dataset would be zero. Note that this is true with the proviso that each semantic ob-
ject needs to be sufficiently well captured in the test images that no aleatoric uncertainty is
present. To some degree, this type of large-scale training has been attempted in works such
as DINOv2 [31], CLIP [30] and Segment Anything [60].

However, for the practical setting introduced in Chapter |1} we can say that distributional
uncertainty cannot be fully reduced by the modeller. Firstly, this is because large-scale vision
models in question cannot classify or segment any test dataset with zero error. Secondly,
the recognition of every possible semantic class requires a model capacity that is far larger
than needed. For example, a 10 class classification problem CIFAR-10 can be solved with
92.74 % top-1 accuracy by kMobileNet V3 Large 16ch [61] with 400k parameters, while a
1000 class classification problem ImageNet-1k requires Florence-CoSwin-H [62] with 893 M
parameters to achieve a 90.05 % top-1 accuracy, with the latter incurring significantly more
latency and GPU memory usage. In addition, the cost of this large-scale training — in terms
of cost of GPUs or cloud credits — is prohibitively expensive for many settings. For example,
CLIP [30] was trained on 256 NVIDIA V100 GPUs for two weeks, equivalent to costing in the
order of $100,000s. This means that even if these types of model did allow us to fully reduce
distributional uncertainty, there are currently significant challenges with both training and
deploying them.

In summary, this shows that distributional uncertainty is theoretically epistemic, how-

2If we consider language to be finite and that semantics are ultimately described in language, we can con-
vince ourselves that the number of possible semantic concepts are also finite.
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Possible semantic classes K* ko ks k4 @ .- @
Semantic classes defined for task K ko k3 ks @ - @

(a) Modelling all semantic classes, thus any error is due to epistemic uncertainty.

Possible semantic classes K* a ko ks k4 @ . @

Semantic classes defined for task K a ko ks

(b) Modelling only the semantic classes of interest, thus errors due to classes k4.~ relate to aleatoric
uncertainty.

Possible semantic classes K* 6 ko k3

Semantic classes defined for task K 6 ko ks

(c) Modelling only the semantic classes of interest, thus errors due to classes k4.~ relate to epistemic
uncertainty.

Figure 3.1: Suppose the set of all semantic classes is K* = ki, ..., kg+, but we define a seg-
mentation task in which only the set, K = {ky, ks, k3} are of interest. This figure represents
the possible ways in which we can approach this problem: (a) seeks to segment all classes,
(b) simply ignores the classes not of interest, while (c) adds an additional unknown class K
to represent all irrelevant classes. As described this impacts the definition of component (1)
of distributional uncertainty as aleatoric or epistemic.

ever a tractable implementation would not reduce the test error to zero. This raises the
question: Factoring in the current state-of-the-art in computer vision and the constraints of
mobile robotics, is it the case that distributional uncertainty is best treated as epistemic?

In the following sub-sections, the described components of distributional uncertainty
will be discussed in detail. This will subsequently be used to argue that aleatoric methods

can also be used to effectively model distributional uncertainty.

Uncertainty due to unknown classes

It is firstly worth considering the nature of the models and data in use. A labelled train-

ing dataset for semantic segmentation defines a finite set of known semantic classes K =
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{k1,ka, ..., kk}, and pixels in the dataset that do not belong to those classes or remain unla-
belled due to ambiguity are assigned to an undefined class ky, often referred to as void.

Typically in benchmarks such as [25], [63], segmentation networks are evaluated with the
test dataset on their ability to segment the known classes only, i.e. the segmentations of the
pixels labelled as kj are ignored. For this reason, it is common for a segmentation network
to produce K logits, one for each of the semantic classes defined by the training dataset. In
this setting, a segmentation network trained on these classes therefore estimates which of
the finite set of known classes a given pixel belongs to, i.e. for each pixel, the model outputs
p(ylz) = [p(y = ki|x), ... p(y = kkl|z)] € [0,1]%, introduced in Section 2.1.2}

In robotics, we need to consider the entirety of the image, and so these void pixels will
contribute to the distributional uncertainty of the test dataset. Under this previous defi-
nition, it is not possible for the segmentation network to correctly segment pixels not in
K. For this model definition, this means that component (1) of distributional uncertainty is
aleatoric, see Figure[3.1b)

However, we could also design a model that produces K + 1 logits, where for each pixel
pylz) = [ply = ki|x),...,p(y = kk|z),p(y = kg|z)] € [0,1]5FL. In this case, the final
class K represents any semantic class that is not a known and defined semantic class, see
Figure3.1c. In this case, and given that labelled pixels for this class exist in typical semantic
segmentation datasets as void, component (1) of distributional uncertainty is epistemic, as
more training data of pixels belonging to class ki will improve segmentation accuracy.

This therefore suggests that this component of distributional uncertainty might be con-

sidered as either epistemic or aleatoric depending on the formulation used.

Uncertainty due to intra-class variation

The second component of distributional uncertainty is due to the intra-class visual dissimi-
larity between the labelled training distribution (i.e. the source domain) and the distributionally-
shifted test distribution (i.e. the target domain). On the surface, this is clearly epistemic as
adding more diversity to the dataset of existing classes will improve segmentation perfor-
mance.

However, much like component (1), this is also a matter of definition, as semantic classes
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(a) Cityscapes (b) SAX New Forest
yscap

Figure 3.2: Images from two datasets demonstrating the subjectivity of semantic classes.
Suppose (a) is an example of an image from a labelled training dataset that defines the se-
mantic classes. If we consider the road class, how does this semantic concept relate to (b)?
Is road defined by the type of road surface, or by the notion of traversability, or by the rules
of the road in this specific geographic location? And therefore which of regions of (b) is it
appropriate to call road? The image in (b) is from our dataset presented later in Chapter E}

are inherently subjective (illustrated in Figure[3.2). For this reason, it is down to the judge-
ment of the modeller to decide whether an appearance change constitutes the creation of
a new class, or whether this new appearance change is within the definition of the original
class. For example in Figure[3.2b} do all pixels from traversable regions relate to road, or is it
only those from the paved sections of the road? If the former is true, then the distributional
uncertainty associated with those pixels is epistemic as more training images of unpaved
roads would improve segmentation accuracy. However, if the latter is true and ground-
truth label for the pixels to the left of the paved road is unpaved_road and not road, then
distributional uncertainty associated with these pixels is aleatoric. This is because the model
cannot segment pixels as unpaved_road, and therefore this uncertainty cannot be reduced.

Therefore, much like the previous component, whether distributional uncertainty due to

intra-class variation is aleatoric or epistemic is a matter of perspective.

Summary

Considering both components of our defined components, this analysis has shown us whether
distributional uncertainty is epistemic or aleatoric is conditioned on the modeller’s decisions
rather than being an intrinsic property. Based on this understanding, this thesis also consid-
ers aleatoric uncertainty estimation methods unlike many other works. In fact, given the
computational benefits of aleatoric uncertainty estimation (detailed in Section [3.4.5), these

methods are of particular interest.
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3.3 Epistemic Uncertainty Estimation

3.3.1 Principles for Epistemic Uncertainty Estimation

As epistemic uncertainty is intrinsic to the model, and not the test data, epistemic uncer-
tainty estimation methods seek to capture how the model parameters relate to model per-
formance for a given input. One framing of this is Bayesian, whereby instead of treating
the model as deterministic, the model parameters are instead treated as random variables,
yielding a Bayesian Neural Network (BNN), such as in [64], [65].

For this, the weight posterior distribution p(#|D) is considered where ¢ represents the
model parameters, and D the training dataset. Bayes’ Rule tells us that the weight posterior

can be computed as:
pDO)p(6) _  p(D|0)p(9)
(D) JoP(DIO)p(6)d6

In this setting, the likelihood p(ID|#) is a measure of how well a given set of parameters fit

p(0|D) =

the data. The prior p(#) represents our beliefs about the weights before any data is observed.
p(D) is the model evidence and represents the likelihood of the observed data under all pos-
sible parameterisations of the model, i.e. it is an aggregation of likelihoods p(ID|#) evaluated
for all possible values of §. Each of these are used to calculate the weight posterior p(6|D),
which represents which weight values best explain the observed data.

The predictive distribution is calculated by evaluating the model predictions p(y|z, ¢) for

all possible weight values:

plyle, D) = / Dyl O)p(6D)d6 (3.1)

Epistemic uncertainty is then commonly calculated as either the Predictive Entropy (PE) or
Mutual Information (MI), as described in [66]:
K

PE = H[p(ylz, D) = = Y p(y = klz,D)log p(y = k|, D) (3.2)

k=1
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MI = H[p(y|z, D)] + Eyop) [—H[p(y|z, 0)]] (3.3)

K

k=1

PE is the entropy of the predictive distribution, and represents the total predictive un-
certainty. PE is high when either: (1) the posterior distribution is broad, causing a large
spread in p(y = k|z, D), or (2) the posterior distribution is sharp, however for each possible
parameterisation, the prediction p(y|z, §) is of low confidence. As an example, for a binary
classification problem, suppose we sample parameters from p(0|D) as [0, 6%, ..., 6>].

The scenario (1) relates to sampling a wide range of parameter values yielding variable

predictions, such as:

[p(ylx7 01),p(y|I7 02>’p(y"r7 03)7 st 7p(y|x7 000)] = [(]" 0)7 (07 1)7 (O’ ]')7 R (17 O)]

which give a predictive distribution of p(y|z,D) = (0.5,0.5), and thus a PE = 0.3.
The scenario (2) relates to sampling parameter values that are very similar, which give

very consistent predictions, but in this case these predictions are consistently unconfident:

[p(y|z, 0%, p(y|z, 62), p(y|z, 6%), . .., ply|z, 6°°)] = [(0.5,0.5),(0.5,0.5), (0.5,0.5), ..., (0.5,0.5)]

which also give a predictive distribution of p(y|z,D) = (0.5,0.5), and thus a PE = 0.3.

In contrast, MI focusses specifically on the uncertainty in the weight posterior, by calcu-
lating the difference between the total predictive uncertainty PE and the uncertainty related
to average entropy of each specific model parameterisation E, ) [H[p(y|z,0)]]. In scenario
(1), MI = PE, as each of H[p(y|z,0)] = 0, meaning that the uncertainty due to the weight
posterior makes up the entire predictive uncertainty. However in scenario (2), MI = 0, as PE
and H|[p(y|x,0)] are the same for each 6, and thus the uncertainty due to the weight posterior
does not contribute to the total predictive uncertainty. MI is therefore more commonly used
when we want to specifically measure the uncertainty from the parameter distribution, such
as in active learning [66].

Unfortunately, evaluating the weight posterior with exact Bayesian analysis is not tractable

due to the required integration over all possible weight values in the model evidence, and
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the very high-dimensionality of the model parameter space, §. A number of different ap-

proximations are made to solve this, and these are discussed in the next section.

3.3.2 Methods for Epistemic Uncertainty Estimation

One such approximation, named Monte Carlo Dropout (MCD) [64], approximates the weight
posterior p(#|D) with ¢(#) using dropout [41]. Here, a network is trained with dropout lay-
ers yielding N parameters, § = {6;,...,0y}, and then at inference time, sets of weights are
sampled from the weight posterior, such that the m™ sample is given by 6™ = {41, ... 07},
where é;” = 0; % z; and z; ~ Bernoulli(pgrep). If M sets of parameters are sampled, the predic-

tive distribution is given by:

pie.D) = [ plule. 000D ~ [ pole.0)a@)i0 ~ 57 Y ple i) 6

And then PE and MI can be redefined for M samples as:
K (1 M A LM A
PE=—-) (M > oyl e’")) log (H > plylz, 9””‘)) (3.6)

M K
1 Am. Hm
MI = PE + i E E p(y = klz,0™)logp(y = k|z,6™) (3.7)

Another approach, Bayes-by-Backprop, instead approximates the weight posterior with
a distribution that is itself parameterised, i.e. ¢(6,a), where a are the parameters defin-
ing that shape of ¢(-). The general form for how to use variational inference for neural
networks is to fit & by minimising the the variational free energy, 7 (D, «), such that a* =

arg min F (D, o) and:

F(D, a) = KL{g(6]a), p(8)] - / 4(0]a) log p(D|9)d6 (3.8)

The first term represents the distance between the variational distribution ¢(f|«) and the true
prior p(#), while the second term represents how well the variational distribution explains

the observed data.
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Bayes-by-Backprop is approximates this expression with:
M ~ A~ A~
F(D,a) ~ > logg(0™|a) —log p(6™) — log p(D|f™) (3.9)
m=1

Where M is the number of Monte Carlo samples, and 6™ is a set of model parameters sam-
pled from ¢(§™|a). In this way, this method is able to approximate the weight posterior
p(0|D) with ¢(f™|a) and calculate uncertainty as the variance of the predictive distribution
for each of the sampled 6. In [65], the authors experiment with both Gaussian and scale
mixture distributions as the priors for Gaussian distributed posteriors.

This method tends to be challenging to train to a high accuracy and tends to increase
training time substantially. This is due to the need to sample sets of parameters and so
there is a trade-off between diversity of sampled weights §” and how many forward passes
are required to compute a batch, as discussed in [67]. In order to see as many possible
weight perturbations as possible and to reduce the variance of the gradient updates, we
would want to sample a different ™ for each batch element. This, however, is extremely
computationally intensive. Additional methods have been devised to try to deal with this
problem, e.g. Flipout [67].

In contrast to methods that draw on a Bayesian underpinning, ensembles have been used
to produce very high-quality epistemic uncertainty estimates [68]. Instead of sampling from
¢(-), samples from the weight distribution {#',... 6} are obtained by training M neural
networks independently on the same training data. In order to obtain diversity in the neural
networks, each member of the ensemble is initialised with a different set of random weights
and the training data is presented in a different order. Not only is the training in this method
straightforward, but it also often leads to higher model accuracy.

Similar to the approaches using BNNS, the epistemic uncertainty can be calculated using
PE and MI. Despite the lack of direct Bayesian interpretation, this approach has been very

successful at producing accurate epistemic uncertainty estimates.
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3.3.3 Discussion

These approaches have been shown to produce high-quality uncertainty estimates (espe-
cially MCD and deep ensembles). They do however have a major drawback relating to their
computational efficiency at training and, most importantly for this thesis, at testing.

In order to obtain an uncertainty estimate for a single image, we require M forward
passes, relating to the M different parameterisations of the neural network. Therefore in
order to run this on a robotic platform, either the memory requirement increases by a factor
of M to maintain latency, or the latency increases by a factor of M. Itis typically reported that
an appropriate value for M is 5 or more. Therefore the former is often not possible due to
limited hardware deployed on edge devices, e.g. a NVIDIA Jetson Nano Developer Kit has
only 4 GB of GPU memory which cannot support 5 high accuracy segmentation networks
in parallel. The latter significantly affects safety and usefulness, as a 5x increase in latency
would typically make a segmentation network unsafe for a number of different tasks, e.g.
path planning in dynamic environments.

In order to mitigate this, methods such as [69], [70], distil the uncertainty estimates of
MCD networks and ensembles into a single deterministic neural network. In both cases,
measures of the variance are used as targets, which a neural network is trained to approxi-
mate in a single forward pass. There is naturally a corresponding drop in performance, but

makes the discussed epistemic approaches feasible for mobile robotics settings.

3.4 Aleatoric Uncertainty Estimation

The presence of aleatoric uncertainty means that it is not possible for the modeller to design
a model that fully reduces the error on the test dataset, because aleatoric uncertainty is in-
herent to the data. For this reason, methods that seek to estimate aleatoric uncertainty focus
on the relationship between appearance of image regions and error, rather than the model
parameters and error.

Suppose we are considering a classification task for which we have ground-truth la-
belling, a neural network can be trained to perform both classification and aleatoric un-

certainty estimation as follows. As the cross-entropy classification loss decreases, the error
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rate on the training and validation data decreases, and thus the epistemic uncertainty has
decreased. This continues to occur until the error rate plateaus at a non-zero value, and the
epistemic uncertainty cannot be further reduced. It can be assumed that for the images that
are still incorrect, there is insufficient discriminative information contained in them for the
model to be accurat This might be because of class ambiguity, sensor noise, fog, darkness,
sensor adherents, sensor resolution etc. It is therefore appropriate for a method to be able to

detect these images, and to output a high aleatoric uncertainty for them.

3.4.1 Learned Loss Attenuation

One way of doing this is to have the task model output both a task estimate, e.g. a classifi-
cation estimate, and also an uncertainty estimate. This is often achieved by placing a prior
distribution over the networks outputs, and using a set of methods named learned loss at-
tenuation [71], but also presented previously in [72]. For classification tasks, this is slightly
awkward to think about, and so for readability, this type of method will first be explained
for a regression task, e.g. depth estimation. This sub-section will then subsequently describe
the extension to classification and segmentation tasks.

We define a model gy which produces both a regression estimate and uncertainty es-
timate for a given image x: [y, 0% = gp(x). For each image, there exists a ground-truth
regression label y*, such that error can be measured as ||z — y*||2. For this formulation, the
model can be trained to perform regression and uncertainty estimation by assuming a Gaus-
sian likelihood. Supposing we have defined a pixel-wise regression task, we can calculate

the loss for each pixel location i as:
12 i = yill3 1
MLE _ ill2 2

The model can minimise this loss function in two ways: (1) either it can reduce the regres-
sion error || ; — y7||2 (minimising the numerator) and estimate a low variance ¢, minimising
log(c?), or (2) it can estimate a large value for o7 (maximising the denominator). The former

of the two options trains the model to solve the regression task, while the latter trains the

*Note that this is an assumption, and it could also be attributed to sub-optimal model architecture, opti-
mizer, training dataset, etc.
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model to output high uncertainty values when the model cannot sufficiently reduce the er-
ror for a pixel. The {log(c?) term prevents the loss from being minimised by estimating a
large variance for all pixels, as this term is minimised by o; — 0.

The formulation above is extended to classification and segmentation problems in [71] by
placing a Gaussian distribution over the logits 1, before obtaining the categorical distribution
p with the softmax function. As before, we define a neural network to produce explicit
uncertainty estimates: [1, o%] = gy(x), with logits and covariances for each pixel i as 1; € R¥

and o? € R¥*¥ regpectively, where the latter is diagonal. The logit distribution is given by:

L~ N (1, 0?) (3.11)

Where now p; = softmax(l;). The loss function again takes the form of the negative log-

likelihood:

LY = —log softmax(1; g—y~) (3.12)

Unfortunately, there is no analytical solution to combine the softmax function and Gaus-
sian distribution, and so each L needs to be sampled as L,m,k = L + €nr Where €, ~

N (0, 03). Incorporating the sampling and expanding for clarity gives us:

M K
1 ~ ~ 1 - -
LMUE — 7 Z (—li’m’ky* + log Z exp(lim,k)) i Z (mgx[li7m7k] - lim’k:y*) (3.13)

m=1 k=1 =1

The interpretation of this loss is aided by recalling that the log-sum-exp is a smooth ap-
proximation to the max function, as shown in Equation m The first way in which the
model can reduce the loss is by ensuring that the sampled logit which corresponds to the
correct class is the largest. This can be done by expressing a low corresponding value of o7
and large deterministic logit value 1, = y*. This allows the model to learn the classification
problem.

Similar to the regression case, the model also learns to estimate uncertainty by using its
estimate o to reduce the loss for misclassified images. A carefully chosen increase to o
can increase the noise of the sampled logits, which decreases the confidence of the model
prediction. On average, this can reduce the difference between max;, [Lmk] and L‘,m,k:y*, and

thus minimise the negative log-likelihood in Equation (3.12).
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Note that this is similar to simply performing MLE without a Gaussian distribution over
the logits. The key difference in this formulation is that the model learns to reduce the loss
via the explicit estimation of uncertainty o%, whereas simpler MLE without the Gaussian log-
its trains a model to reduce the loss via implicitly representing uncertainty as high entropy
categorical distributiong’,

The formulation in [73] is similar to the classification case for a binary segmentation
problem, but uses an approximation instead of resorting to Monte Carlo sampling from the
Gaussian across the softmax function. It states that the Monte Carlo sampling required 10*
samples to converge to the true distribution, and so this approximation is a great help during
training.

In [74], aleatoric uncertainty estimates are learned alongside learning surface normal esti-
mation by using learned loss attenuation with the von Mises-Fisher distribution, a spherical
equivalent to the Gaussian distribution. A 3D super-resolution task is defined in [75], and it
trains a neural network with learned loss attenuation to also estimate aleatoric uncertainty
with a Gaussian regression formulation.

The methods discussed so far have used ground-truth supervision in order to measure
where error has occurred. In contrast, [76], [77] define self-supervised tasks and probabilistic
self-supervised objectives to solve them. A neural network is trained in [76] to estimate the
3D geometry of objects from a single image. The self-supervised task involves learning to
estimate depth and viewpoint via supervision from egomotion and depth from Structure
from Motion (SfM) applied to videos. The estimation of aleatoric uncertainty is motivated
by the need to reduce the noise in the self-supervised task, which is achieved by attenuating
the loss for uncertain depth or viewpoint estimates.

In [77], a neural network is trained to extract geometric features by defining a self-
supervised data augmentation task. Similar to [76], it learns aleatoric uncertainty estimation
in order to mitigate the gradient contributions of image regions where a stable match is not
possible, i.e. where there is insufficient discriminative information to describe a region, such

as feature-less surfaces. For this task, it also uses the learned loss attenuation formulation,

“Note that this is not true for typical regression problems with a mean squared error loss function. In this
case, if the model thinks its estimate is erroneous, there is no recourse for mitigating the loss. In contrast,
classification problems always implicitly model the uncertainty with a categorical distribution, which results
in learning to mitigate large loss values due to misclassification through high entropy estimates.
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where, in this case, the network output parameterises an exponential distribution.

The learned loss attenuation formulation is built upon in [78] and it introduces one main
idea. It proposes a framework that parameterises each set of intermediate features through-
out the network as a distribution. In this way, not only does the network output its uncer-
tainty in its task estimate, but it also outputs its uncertainty for each feature. The motivation
for this is that when a model only outputs its uncertainty in its output, it must in someway
encode the uncertainty in its features into the features themselves. However, this method
seeks to disentangle this information.

To explain this by way of an example, suppose a cat/dog classification model is given an
image of a monkey. In order to express uncertainty at the output, the model’s features must
describe the monkey in sufficient detail that its features are distinct from that of cats and
dogs. However with this framework, the features can encode the task-specific information
about the image, i.e. how cat-like or dog-like the monkey looks, while the uncertainty over
the features can tell the model to ultimately ignore this information as it looks like neither.

It does this by using variational expectation propagation, in which a neural network
layer’s outputs parameterise a chosen distribution ¢(-). This is done by using moment
matching (a.k.a. assumed density filtering), as shown below. This means that the distri-
bution at the output of ith layer of neural network £, with input 2(~1 ~ ¢(z"~V) is parame-
terised by:

pul = Eq(zu—l))[féi)(z(i_l))]a ol = Vq(z(i—n)[féi)(z(i_l))] (3.14)

Which for a linear layer £/ (2(-D) = W2z(=1 4 b, is given by E[f))] = Wul=D + b,
Vit g)] = (W o W)o=1), where © is a element-wise product. This work also gives formulae
for how uncertainty can be propagated through other commonly used layers.

In addition to this, when Gaussian distributions are chosen for ¢(-), [78] shows how the
Dirichlet distribution can be used as the output distribution for classification in conjunction

with these propagated Gaussian feature distributions.

3.4.2 Direct Error Estimation

Instead of using a probabilistic formulation to model the error as a distribution, it is also

possible to simply measure and directly estimate the error during training.
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For the task of camouflaged object detection, a challenging binary image segmentation
task, [79] does this exactly this. The error for the segmentation network is measured, which
is then used to supervise the training of a separate ‘Online Confidence Estimation Network’,
which poses error estimation as a binary classification problem.

The Segment Anything Model is introduced in [60], which is a foundation model for
image segmentation, and can have its estimated segmentations conditioned on a text or
point-wise prompt. It is trained on a very diverse image segmentation dataset which con-
tains annotation masks that use a range of definitions for what an object is, and thus where
the segmentation boundaries should be. On top of this, while easy for human interaction,
point-wise prompts are sufficiently un-descriptive, that it is often unclear what the correct
segmentation should be, i.e. should it be of the whole object, or the object part, or the object
sub-part? These factors induce ambiguity in the segmentation task, which this work solves
by modelling this uncertainty. The model is trained to output multiple segmentations for a
given input, and then a small neural network is trained on top of the model to predict the
segmentation quality, in terms of Intersection over Union (IoU), of each of these possible seg-
mentations. During inference, the estimated IoUs are used to then rank the output, where
only the most high-quality segmentation is returned. If an image is given to this model,
and the highest-quality segmentation it can produce has a low IoU, then it can be said that
this was due to aleatoric uncertainty. The model was trained on a vast dataset, and is itself
extremely expressive, therefore it is very likely in this case that it was inherently ambiguous
where the segmentation boundaries should be.

Finally, [80], [81]], also focus on producing image-wise measures of segmentation quality,
the Jaccard Index and Dice Similarity Coefficient respectively. These are designed for the
clinical setting, where poor quality segmentations can be automatically flagged, leading to
closer inspection by a clinician.

Albeit in a different setting, each of these works broadly align with the objective of this
thesis, as they seek to estimate when segmentation error is higher (or segmentation quality

is lower), such that the effects of this can be mitigated for the broader system.
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3.4.3 Generative Modelling

Section [3.4.1] considers how to train a neural network to parameterise a distribution at the
network output that captures the variability in its accuracy, and is supervised by the ground-
truth error as provided by a labelled training dataset. An alternative approach is to train a
segmentation network to parameterise a distribution, which captures the variability in plau-
sible segmentations for a given image. The major motivation for this method is to represent
uncertainty via the diversity of the set of plausible and coherent segmentations, rather than
a pixel-wise map of uncertainties. This type of method is often seen in the context of medi-
cal imaging, where experts frequently disagree on the location of object boundaries, and this
disagreement is a key aspect of ensuring good clinical decisions and outcomes.

The key difference between this setting and the previous is that these methods are re-
quired to model the joint probability of class assignment over all pixels. This is in contrast
to standard cross-entropy training and learned loss attenuation, where the pixels are often
modelled independently, therefore sampling from high uncertainty regions leads to high-
frequency noise rather than diverse coherent segmentations.

When segmentation networks are trained with this method on a large labelled dataset,
the resulting variability at test-time will likely be due to the inherent ambiguity in the input
image, rather than ambiguity due to an insufficient dataset. Therefore in this setting, we can
treat the segmentation variability as a measure of aleatoric uncertainty.

This distribution of plausible segmentations can be achieved by either (1) defining a dis-
tribution in latent space, from which samples are decoded into segmentations, as in [82]-
[84], or (2) explicitly modelling the joint distribution at the output of the neural network, as
in [85].

In [82], the Probabilistic U-Net is proposed, which combines a conditional Variational
Autoencoder (VAE) [86] with a U-Net segmentation network [87]. It is trained such that,
during inference, a plausible segmentation is sampled by: (1) using the prior network to
parameterise an F;-dimensional Gaussian conditioned on the input image (2) extracting fea-
tures R2*"** from the image with the segmentation network (3) sampling a R** vector from
Fi-dim Gaussian, tiling it to the spatial dimensions of the U-Net features, and then concate-

nating the sample and the U-Net features RU1+£2)xhxw (4) decoding this concatenated vector
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into a segmentation map. This work was improved in [83]] by folding the prior network into
the segmentation network, and having a hierarchy of latent distributions in the decoding
stages of the U-Net.

They evaluated the model by injecting ambiguity into the Cityscapes dataset, by ran-
domly flipping class labels with a certain probability e.g. sidewalkisflipped to sidewalk-2
with a probability of 3/17. The samples from the learned distribution were shown to reflect
this ambiguity, as the frequency of class assignment across samples reflected the class flip
probabilities.

Another approach that aims to learn a distribution of plausible segmentations is [85].
Instead of using latent distributions, this work seeks to train a network to parameterise
a Gaussian distribution; but in contrast to the learned loss attenuation methods, this dis-
tribution should model the joint distribution over pixels and classes, 1 ~ N (11,%), where
i€ REWXE and ¥ € RUW>K)® and ¥ is non-diagonal. The enormity of this required distri-
bution makes it intractable to use, so they instead use a low-rank parameterisation of the X.
Much like [71]], they do use Monte Carlo sampling through the softmax function instead of

an analytical solution.

3.4.4 Test-Time Augmentation

In Section [3.4.1land Section[3.4.2), neural networks were trained to tell us at test-time the like-
lihood of a pixel being correctly segmented based on its appearance. The neural networks
learned this by observing when error occurs, and learning to relate appearance and error.
In contrast, another method trains a segmentation network normally, and only investi-
gates the relationship between appearance and error at test-time. It does this with image
augmentation, which changes the appearance of an image but leaves the underlying seman-
tic content unchanged. From the distribution of possible image augmentations it is possible
to obtain a distribution of possible segmentations, where, the more variable the segmenta-
tion of a given pixel, the more likely the pixel is to be segmented incorrectly. As before, if
a segmentation network is trained with a training dataset that captures the test distribution
well, then inconsistent segmentation is likely due to an inherent lack of information in the

image from which to infer where segmentation boundaries are located.
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This approach essentially applies perturbations to the input data in order to measure
how the model output varies, in contrast to epistemic approaches which apply perturbations
to the model parameters instead. This is reflective of the difference in the nature of aleatoric
and epistemic uncertainty.

For the task of segmenting 2D and 3D MRI scans, [88] applies flipping, rotating, scaling
and random intensity noise as augmentations to a given input scan, yielding 20 perturbed
samples. They measure uncertainty from this distribution of segmentations by using the
predictive entropy, and show that, for their task, this test-time augmentation outperformed
Monte Carlo Dropout in terms of quality of uncertainty estimation.

The work in [89] uses a similar approach for the task of detecting Diabetic Retinopathy in
high-resolution images of the retina. It applies both the spatial transforms of the previous,
but due to using RGB images, it also uses colour-space transforms such as randomly chang-
ing the hue. Instead of 20 samples, this method samples 128 augmentations, and measures

uncertainty as the median max class assignment probability.

3.4.5 Discussion

Aleatoric uncertainty estimation methods use training and test data that is entirely in-distribution.
This means that when error or segmentation variability is found, it is inferred that this is

due to the data’s inherent ambiguity, rather than distributional shift, poor model architec-

ture choices, poor model optimization, or any other reason. However, suppose that we used

a dataset containing OoD data. In this case, when error or segmentation variability is mea-
sured, we might instead attribute it to distributional uncertainty, as discussed in Section |3_2L

This means that while the specific experiments in the cited works are not entirely relevant,
many of the methods can still be broadly of interest to us if used with OoD data.

Both learned loss attenuation and direct error estimation methods are of interest, as they
allow a model to output uncertainty estimates in a single forward pass. This means that
memory usage and latency are not meaningfully increased from a standard segmentation
network, which is a very desirable characteristic in the context of mobile robotics. The down-
side to many of these methods is that they require ground-truth in order to determine where

error occurs. If the training dataset contains in-distribution and OoD instances within the
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same dataset, these methods would require pixel-wise annotation, which is costly in terms
of resources.

The cited works using deep generative modelling for aleatoric uncertainty use a labelled
training dataset, which contains various possible segmentations of the same image. This
is largely because they were from the field of medical imaging and used the lung image
database consortium (LIDC) dataset [90], which contains lung scans, each with four annota-
tions from expert clinicians. The curation of this type of dataset is very resource intensive,
and likely not feasible for a large scale OoD dataset, as discussed in Chapter 4]

One solution to the problem of a lack of pixel-wise annotations is to use test-time aug-
mentation, which does not involve uncertainty-specific training, i.e. the segmentation net-
work just needs to be trained in a standard manner. This means that error can be discovered
without the use of any labels. Therefore, a segmentation network could be trained on a la-
belled dataset from one domain, and then error due to distributional shift could be estimated
by this method at test-time on test data from a different domain. The downside to test-time
augmentation is that there is a significant computational cost at test-time, as a given test
image needs to be augmented and then segmented many times. A possible solution to this
is to use augmentation during training and to distill the distribution of segmentations into

a single model, similar to methods that do the same for ensembles or MCD.

3.5 Out-of-Distribution Detection

OoD detection is the task of identifying data points that do not belong to a given data dis-
tribution. While the focus of uncertainty estimation is to identify which of the model’s at-
tempts to solve a task are incorrect (and sometimes this is due to a distributional shift), by
contrast, the focus of OoD detection is to identify instances of distributional shift (and often
this leads to error for the task model). There is, however, clearly a significant amount of
overlap between the two, and a given OoD detection method’s estimated ‘OoD-ness’ score
can immediately be interpreted as an estimate of distributional uncertainty.

There are many different ways to approach this problem, and we will discuss each in the

following sub-sections.
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3.5.1 Pretrained Methods

One set of methods for OoD detection constrains itself to the use of a frozen pre-trained
network, where different inference methods are designed to leverage the learned represen-
tation and to produce a OoD score. In this setting, training data is used to train a neural
network for classification or segmentation, and the training data distribution is defined as
in-distribution. OoD instances are then detected by using the model’s learned features, log-
its or categorical distributions to compare how similar a given test image is to the training
images.

A common baseline, [91], calculates the max softmax score, pmax, Where the temperature
parameter in the softmax function is typically tuned with validation data. [92] improve on
this method by adversarially perturbing the input test images, as this empirically resulted in
greater separation between the in-distribution and OoD examples. [93] calculates the OoD
score based on the Mahalanobis distance between the embeddings of the test image and the
labelled training dataset, and does this in a series of feature spaces throughout the network.

In [94], a distinction is made between methods that use features and methods that use
logits or max softmax scores. They argue that logits and pu.x contain only class-dependent
information, i.e. they only consider the similarity of a given test image to each of the in-
distribution classes. By contrast, feature-based methods contain more class-agnostic infor-
mation.

An experiment in [94] uses the iNaturalist dataset [95] as a OoD dataset (as in [96])
with ImageNet-1k [97] defining in-distribution, where iNaturalist in this setting contains 110
plant classes that are not contained in ImageNet-1k. In this instance, feature-based methods
struggle more as they focus less on the class-specific detail that differentiates between the
plants in ImageNet and the OoD plants. The class-dependent information in the logits and
Pmax Mmethods contain more on the required level of specificity, and therefore OoD detection
performance was better, as the model could not decide which of the ImageNet classes to
assign the iNaturalist image to.

Then, [94] uses the Describable Textures Dataset [98] as OoD, which contains a diverse
set of images that define textures, rather than describe semantic objects. On this dataset they

showed that the methods using class-dependent information performed poorly compared
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to the feature-based, class-agnostic methods. This shows that features are generally better
at describing broader, less semantically driven differences between images. They finally
developed a method using logits and features to reap the benefits of both.

An alternative method, presented in [99], applies density estimation to a feature space
in order to assess whether a given test feature is in-distribution or OoD. For features » and
classes y, the method calculates p(y) and then models p(z|y) with a Gaussian Mixture Model,
before calculating the OoD scores as — log(p(z)), where p(z) = [ p(z|y)p(y)dy. This work
notes that it would be preferable to train the network, such that its representation contained
‘task-agnostic’ information as well as task-specific information. However, it constrains itself
to only developing an inference procedure for OoD detection for a given model.

This therefore suggests that, in addition to the logits and py.x, the features from pre-
trained networks may also be largely class- or task-specific, as they are trained to extract
information that is salient to the task. This means that these approaches are likely to fail
when there is not sufficient information in the training dataset for the model to learn to

appropriately describe OoD instances in the features, logits or pyax.

3.5.2 Regularisation-Based Methods

Methods in this sub-section build on those in Section |3.5.1) by adding a loss that regu-
larises neural network training on labelled data. The objective of this is to embed more

task-agnostic information into the network, in order to improve OoD detection.

Deterministic Uncertainty Methods

These methods add regularisation to model training by using spectral normalisation [100].
Spectral normalisation layers constrain the Lipschitz constant of a network, where the Lips-

chitz constant, M, of a function is a value that satisfies:

dA(f($1)7 f(Z‘Q)) S MdB(ZL’h l’g)

where d,, dg are metrics on the sets A and B respectively, for a function f : A — B. The Lips-

chitz constant is therefore a measure of the extent to which a function amplifies or attenuates
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the distance between points x4, =, in their different metric spaces.

The goal of training in this way is to yield a model with a learned representation in
which distance between features z; = f(z;) and z; = f(z3) is a measure of the semantic
difference between pixels z; and ;. If this is true, then we would expect an OoD pixel to be
embedded very far away from in-distribution pixels, while in-distribution pixels would be
close to other in-distribution pixels of the same class. This therefore allows OoD detection
to be performed by comparing the distance between the embedded in-distribution dataset
and a given pixel feature from a test image.

Each Deterministic Uncertainty Method (DUM) is trained similarly by using spectral nor-
malisation to perform this regularisation, but each performs inference in a different manner.
[101] replaces the output layer of a classification network with a Gaussian Process. [102]
measures the similarity between features using Radial Basis Function (RBF) kernels. [103]
instead shows that these more complex approaches are not strictly necessary, and that a

simpler post-hoc per-class Gaussian Mixture Model achieves similar OoD performance.

Other Regularisation-Based Methods

[104] presents Deep Variational Information Bottleneck, which adds the Gaussian prior loss
from VAE [86] training to the latent space in a classifier in order to add regularisation to
model training and prevent adversarial attacks. In [105], the authors then showed that using
this method improves OoD detection, when the OoD score is taken as the py,ax. This shows
that this alternative type of regularisation is also effective at improving the representation

by encoding task-agnostic information.

3.5.3 Self-Supervised Learning for OoD Detection

In Section [3.5.2} spectral norm was used to ensure that feature space distance is semantically
meaningful. This is also the objective of many SSL methods, and so these methods can also
used for OoD detection.

SSL methods for computer vision train neural networks to learn a representation from
image data without the use of any annotations. Thanks to the lack of labelling requirement,

SSL methods are typically paired with large and diverse datasets, such as ImageNet [97].
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Therefore, for these works, a ‘good’ representation is one which can be used to solve a wide
range of computer vision problems, e.g. classification, semantic segmentation, depth esti-
mation and object detection.

One way in which this can be achieved is by using data augmentation along with either
an instance classification or a clustering task. Data augmentation allows us to change the
appearance of an image, whilst keeping its semantics the same. Instance classification tasks
then pose network training as a nearest neighbour classification problem, where a pair of
augmented images defines its own class or ‘instance’, as seen in [32], [106]], [107]. Clustering
tasks instead train a network to assign an image and its augmentation to the same cluster,
such as in [108].

Another set of methods instead corrupt a single image, and then train a network to re-
cover the information content of the image from this corrupted input. Examples of this
include re-colourisation tasks [109], patch reordering [110], [111] or, most prevalent at the
moment, masking tasks [31], [112], [113].

Empirically, it has been shown that many of these methods can extract rich semantic in-
formation from a diverse set of images, for example by exhibiting good nearest-neighbour
classification performance on ImageNet, or high quality semantic segmentation on ADE-
20k [114] or Cityscapes [25] by training only a linear layer on top of the learned represen-
tation. Therefore, for the task of OoD detection, this learned representation can be used to
detect the differences between in-distribution and OoD instances, as suggested in [115]].

A related work is [116] which uses the instance classification framework in [32]. How-
ever, the difference is that they do not use a large-scale dataset, but instead solve instance
classification as well as the classification task on only the task-specific in-distribution dataset.
The objective here is to learn ‘task-agnostic’ features with the instance classification loss, in
addition to the ‘task-specific’ using the cross-entropy task loss, with these ideas discussed

previously in Section[3.5.1}

3.5.4 Proxy Task Methods

An alternative approach is to design a task which requires a semantic understanding of an

image to solve, such that a model can successfully solve it for the in-distribution data used
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for training, but struggle on OoD data. One such method [117] samples a transform from a
set of pre-defined geometric transforms (rotations, horizontal flips, large translations with
mirroring), and uses this to augment each training image. The task is then framed as a clas-
sification problem, where the model must estimate which of the pre-defined transforms was
applied to the original image. The OoD score is then computed as p.,.x for a given test image,
i.e. it is predicted that the model will not be able to confidently determine which transform
was applied to the OoD image, due to a lack of recognition of high-level features such as
objects or object parts and no knowledge of how they are usually spatially distributed.
[115] uses a similar approach and defines purely rotational augmentations from the set of
rotation angles: {0°,90°, 180°, 270°}. The difference is that this work does this in combination
with the standard supervised classification training, and uses the classification py.x as the
OoD score. The argument here is that this self-supervised rotation task forces the model
to learn to extract features that describe more than just texture, but also detect high-level
attributes such object parts. Then, by having a ‘higher-quality’ representation of the in-
distribution data, the classification model is better equipped to detect when an image does

not come from this distribution.

3.5.5 Deep Generative Models

Deep generative models seek to learn a high-dimensional representation of the data distribu-
tion for the training images, from which additional samples from the same underlying dis-
tribution can be sampled. Examples of such techniques include VAEs [86], Generative Ad-
versarial Networks (GANs) [118], auto-regressive models [119], Flow-based models [120],
[121], and diffusion models [122]-[124]. Each of these methods provide a way of doing OoD
detection as we can query how well a given test image aligns with the learned represen-
tation of the in-distribution data. The method for measuring this ‘alignment’ is typically
dependent on which type of generative model is being used.

VAEs, auto-regressive models such as PixelCNN, and Normalising Flows provide a way
to evaluate the likelihood of any given test image, and the effectiveness of this for OoD
detection was investigated in [125]. The conclusion from this work, is that we have to be

careful when doing this, as likelihood appeared to be a poor measure of distributional shift.
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Methods such as [126], [127] use reconstruction-based scores instead for a VAE and GAN
respectively, and showed this to be an effective method for OoD detection. In a way, this is
similar to the literature on using proxy tasks for OoD detection presented in Section [3.5.4} as
the generative models are trained by performing reconstruction tasks, and the measure of

‘OoD-ness’ is how well they can perform this task on a test image.

3.5.6 Use of Out-of-Distribution Data

Each of the previously described OoD detection and uncertainty estimation methods train
neural networks using in-distribution data only. They learn a representation from this in-
distribution data, and are tasked with detecting differences between the training data and
test images. In contrast, the methods described in this section use an OoD training dataset
in conjunction with the in-distribution training data.

In principle, these OoD datasets are curated such that each image is OoD, which is mostly
achieved by ensuring that the set of classes defined in the OoD dataset is disjoint from the
set of classes in the in-distribution dataset. A loss function is then defined which trains the
model to learn a separable representation of in-distribution and OoD data.

[128] introduces the common framework for doing this, naming it Outlier Exposure. If
the in-distribution dataset D;, defines a distribution p;, and the OoD dataset defines a distri-

bution pyy, then the outlier exposure objective can be defined as:

L9 = B, [H(y" p(yle))] + Epy [LOP(p(yle))] (3.15)

Where LO°P(p(y|z)) = H[Uniform{0,K — 1}, p(y|z)] is chosen for classification problems,
where Uniform{a, b} is the discrete uniform distribution. The first term maximises the sharp-
ness of p(y|x) at the correct class for in-distribution data, while the second term maximises
the uniformity of p(y|z) for OoD data. Another common choice for LO°P is LO°P(p(y|z)) =
KL[Uniform{0, K — 1} || p(y|z)], e.g. [129]. [51], [130] use the same idea, but instead formu-
late the objective for a Dirichlet-distributed output.

The OoD dataset in these works often derive from a dataset collected for a different task,
e.g. a dataset for the classification of a different set of semantic classes. This means that

there is a large distributional shift between the in-distribution and OoD dataset. It has been
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noted in [128]], [129], that the larger this distributional shift, the less well these OoD detec-
tion methods work. This is likely because the task of learning a separable representation of
two very different sets of data can be fairly trivial, and thus the model can easily overfit to
the training datasets. For a more robust separation, the obtainment of near-distribution or
boundary training examples is therefore important, with the hope that the resultant learned
representation is significantly more general. These are training images which are OoD
enough to cause model error, without appearing so visually distinct from in-distribution
images that they are trivially detected. [129] generates such a near-distribution dataset us-
ing a GAN, which is trained to generate images for which the classifier is unconfident (i.e.
KL[Uniform{0, K — 1} || p(y|z)] is large) while also fooling the discriminator into thinking
the images are in-distribution. If these losses are balanced, [129] shows that the images are

both realistic looking, while also OoD, albeit it on small-scale datasets.

3.5.7 Discussion

It is interesting to compare the literature involving the use of an OoD dataset for OoD de-
tection (which we will call outlier exposure for convenience) to the idea of using learned
loss attenuation methods with OoD data. In both cases, they train a neural network to learn
to detect the differences between in-distribution and OoD data such that they can represent
the difference at the network output and reduce the loss. While outlier exposure requires
a dataset which explicitly describes the desired separation between certain and uncertain,
learned loss attenuation methods measures the error, and thus the desired separation be-
tween certain and uncertain is defined as a function of the model. This means that the latter
provides noisier supervision as the model’s parameterisation changes throughout training,
however it also allows for a more flexible definition of the problem, i.e. it does not force you
to label which data points should be certain or uncertain.

The lack of flexibility in the problem definition allows for the outlier exposure problem
to use the simple formulation of a softmax distribution. By contrast, the additional defini-
tional flexibility typically forces learned loss attenuation problems to use a more complex
objective to account for the lack of direct supervision. Note that this is not true for direct er-

ror estimation for aleatoric uncertainty estimation, but this is a relatively small subset of the
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literature, and is perhaps not widely practised due to the simpler objective’s sub-optimality
when the noise in supervision (i.e. the label noise) is high.

Deep generative models come with the potential that they can simultaneously learn a
rich representation from a large dataset due to a lack of labelling requirement, while also be-
ing performant for specific discriminative tasks. The former allows for higher quality OoD
detection as larger, more diverse datasets allow neural networks to extract more salient in-
formation from images leading to the accentuation of the important differences between in-
distribution and OoD images. The problem with this is that, as discussed in [131], generative
models are not able to match the discriminative performance of discriminative models. For
this reason, a deep generative model would need to be used in parallel to the segmentation
network, which is not efficient from the point of view of computational requirements.

The proxy task methods are predicated on the idea that data augmentation can be used
to distinguish between in-distribution and OoD instances, much like for test-time augmen-
tation methods for aleatoric uncertainty estimation. While both assume that the model is
more invariant to the perturbations to in-distribution data than for OoD data, the cited OoD
detection methods use proxy task training to further increase the separation between the
two. As stated in Section [3.4.5, using augmentation is a useful way of determining erro-
neous image regions without the need for ground-truth labelling. The literature using these
augmentation-based tasks adds evidence that this could work well for OoD data in the same
way that it does with in-distribution data for aleatoric uncertainty estimation.

The final point of interest from this section is from [115], which gives empirical evidence
to the idea that improving the representation with self-supervised learning benefits OoD

detection.

3.6 Conclusion

In this chapter, we have introduced the concepts of epistemic and aleatoric uncertainty, and
situated distributional uncertainty within this framework. We argue that distributional un-
certainty can just as easily be viewed as aleatoric uncertainty, as it can epistemic uncertainty.
For this reason, both sets of methods are open to investigation, and the key determinant

is really the practicality of each method and empirical performance. In terms of practical-
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ity, the promising uncertainty estimation methods include: (1) distilling epistemic methods
into a single model, (2) aleatoric learned loss attenuation methods applied to OoD data (3)
distillation of test-time augmentation based methods, also applied to OoD data.

We have also discussed OoD detection methods, and find that many of these methods
have similarities to aleatoric uncertainty estimation methods. This gives evidence that meth-
ods such as a combination of learned loss attenuation and outlier exposure methods or OoD
proxy task methods and test-time augmentation may well be very well suited to the problem
of computationally-light distributional uncertainty estimation.

In the next chapter, we discuss how this thesis measures the quality of a model’s uncer-
tainty estimates and the datasets used to do this. This is followed by the presentation of
our proposed methods in Chapter |5, Chapter || and Chapter |7, which are motivated by the

discussions in this chapter.
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Chapter 4

Model Evaluation and Datasets
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This chapter describes the method for evaluating the quality of a segmentation model’s
uncertainty estimation and the data used to train and test the models.
Section 4.1/ introduces the method for evaluation: misclassification detection, where un-

certainty estimates are expected to directly detect erroneous pixels. The metrics used to
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evaluate a model’s ability to perform misclassification detection are discussed in detail in
this section, with reference to the robotics context of this thesis.

Then, in Section 4.2} the SAX Semantic Segmentation Dataset is introduced, which was
collected, curated and then annotated over the course of this thesis to serve as a benchmark
for distributional uncertainty estimation. Lastly, in Section [4.3] the other driving datasets
used to train and test models are described, such that we can qualitatively understand the

distributional shift between them.

4.1 Model Evaluation & Metrics

In this thesis, we are interested in evaluating how a model can perform misclassification de-
tection alongside semantic segmentation on distributionally-shifted data. This means that
the uncertainty estimate values are directly interpreted as the model’s estimate of the likeli-
hood that a given pixel is accurate or inaccurate.

This is in contrast to other possible methods for evaluation such as considering model
calibration or OoD detection performance, seen in [43], [44] and [128] respectively. As de-
scribed in Section 2.3] model calibration evaluates how a model’s confidence correlates with
accuracy in a frequentist manner, i.e. for a batch of IV pixels each with similar confidences,
it compares the mean confidence to the mean accuracy. These summary statistics are useful
for getting a general sense of the quality of a model’s uncertainty estimation, but we sug-
gest that they are not suitable for a robotics setting. This is because for a robotic system,
every captured image leads to an updated understanding of an environment, and this un-
derstanding directly conditions the system’s behaviour at a given moment. Therefore, we
need to consider the direct relationship between image and error, as errors can immediately
lead to dangerous robot behaviour.

OoD detection performance is typically measured by evaluating how the OoD scores
are predictive of whether a given image or pixel is in-distribution or OoD, as introduced
in Section This is similar to misclassification detection, however in OoD detection,
in-distribution and OoD are being conflated with accurate and inaccurate respectively. In
our setting, the safety of the system is more closely related to whether image regions are

inaccurate or not, than whether they are OoD or not.
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4.1.1 Misclassification Detection

Misclassification detection is a binary classification problem whereby the uncertainty esti-
mates ‘classify’ each pixel as either certain or uncertain and this is compared to whether the
pixel was segmented accurately, giving the label states accurate and inaccurate — as can also
be found in [91]. Clearly, the ideal model estimates uncertainty such that each pixel is ei-
ther (certain, accurate) or (uncertain, inaccurate). Here is a confusion matrix that defines the

possible states:

Predicted
[certain], | [uncertain],
'S | accurate [TP], [FN],
= | inaccurate [FP], [TN],

We define the accurate and inaccurate label states as positive and negative respectively.
Each of the states: TP, TN, FP, FN, are calculated for a specific threshold ¢ on a model’s
real-valued uncertainty estimates, as illustrated by [.];. Therefore which pixels are certain
and uncertain is also determined by the threshold ¢. From now on, this notation is omitted
for: TP, TN, FP, FN, in the interest of brevity.

The best model can be chosen from a set of imperfect models by a wide range of metrics,
owing to the fact that this is ultimately a binary classification problem. Ultimately, the best
metric to use for evaluating uncertainty estimation is dependent on the context in which the
model is being deployed. We therefore consider a range of possible metrics and justify the

use of each in the context of robotics.

4.1.2 Metrics: Definitions
ROC Curves

A common way to evaluate binary classification algorithms is to use Receiver Operating
Characteristic (ROC) and Precision-Recall (PR) curves, and this also extends to misclassi-

fication detection, as seen in [91]. ROC curves plot two quantities: the True Positive Rate
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(TPR) versus the False Positive Rate (FPR):

TP FP

TPR=————— FPR= ———
R TP + FN’ R FP + TN

The TPR represents the proportion of accurate pixels that are estimated to be certain,
while the FPR is the proportion of inaccurate pixels that are erroneously estimated to be
certain. These quantities are calculated separately for the accurate and inaccurate pixels,
i.e. the pixels that belong to the positive and negative class respectively. They are thus
independent of the class distribution, and so are not affected by the semantic segmentation
accuracy. In order to calculate a single quantity, TPR and FPR are calculated for a range of
thresholds, and then the area under this curve is calculated, known as the AUROC. This is

maximised for the ideal model, where AUROC* = 1.

PR Curves

PR curves are generated by plotting Precision versus Recall, where each are calculated as:

Precis TP Recall TP
= ——— Recall = ———
recision = Mot TP + PN

These curves are often used in context of information retrieval, where the task is to retrieve
the positive class instances, while retrieving as few of the negative class instances as possi-
ble. Using this interpretation for misclassification detection, PR curves measure how effec-
tive a model’s uncertainty estimates are at finding only the accurate pixels, while ignoring
the inaccurate pixels (see above that accurate is defined as the positive class, not inaccurate).
Similarly, these curves can be summarised by calculating the area under them, giving the

AUPR. Again, the ideal model also maximises this metric, with AUPR™ = 1.

Fs Scores

Another method for aggregating PR curves is to calculate the Fg score:

P (1+ B*)TP
7 (1+ B2)TP + FP + 32FN
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The benefit of this metric is that it includes a hyperparameter 3 that can be used to weigh the
importance of precision and recall for any given application. When 8 < 1, greater impor-
tance is given to Precision, while for 3 > 1, greater importance is given to Recal]H Typically,

the values used for j are %, 1 and 2, giving the F1,, F'; and F; scores.

Misclassification Detection Accuracy

Given our binary classification problem of misclassification detection, we can also simply
consider the accuracy of the model on this problem, given the name Ay;p (not to be confused

with the semantic segmentation accuracy), and is calculated as follows:

B TP + TN
" TP+ TN + FP + FN

AMD

Under this metric, an ideal model is one which assigns the greatest number of pixels to

one of two ‘safe’ states: (accurate, certain) and (inaccurate, uncertain).

Single-threshold versus All-threshold metrics

The possible states (TP, TN, FP, FN) are all calculated for a single value of the uncertainty
threshold. However, when we calculate ROC and PR curves and take the area under these
curves, we are summarising the performance over all thresholds.

It is however also useful to calculate metrics for single values of the threshold, i.e. to
evaluate the effectiveness of a method at a single point on the curve. For this type of analysis,
we consider the threshold that maximises Fz and Ayp scores, known as MaxF 3 and MaxAyp
scores.

An additional consideration is needed for this analysis, however, as it is possible that a
model with very low segmentation accuracy on a challenging target domain might end up
with a very good MaxFs or MaxAyp by expressing uncertainty over all pixels. It might be
the case that this model looks better in terms of these metrics than a model that segments
the target domain better, but still largely rejects each pixel as uncertain.

For this reason, we pair the MaxF 3z and MaxAyp scores with the p(a,c), which is the

!Note that as 8 — 0, F3 — Precision, and as 3 — oo, Fg — Recall
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proportion of pixels that are accurate and certain:

B TP
~ TP+ TN+ FP + FN

p(a,c)

In this way, we can also see if the model is actually solving the semantic segmentation
task, as well as being able to detect distributional shift. We present MaxFs; @ p(a,c) and
MaxAnp @ p(a,c) .

4.1.3 Metrics: Discussion

In this thesis, we are primarily interested in situating these evaluations in the context of se-
mantic segmentation for real-world mobile robotics applications. Therefore, it is important

that we consider the following;:

1. What are the misclassification costs for pixels that are FP versus FN in real-world

safety-critical settings?

2. Should the metrics we use to select the best model be independent of the class distri-
bution? By class distribution, we mean the proportion of pixels that are accurate, a.k.a.

p(accurate), which is the same as the semantic segmentation accuracy.

Naturally, the answers to these questions are context-dependent, both in terms of the
nature of the robot deployment, and also how the semantic segmentation maps are used for
robotic planning and control. However, we can still make some general statements.

For the first question, we can say there is a higher importance of certain pixels being
accurate, than uncertain pixels being inaccurate. Therefore, there should be a higher misclas-
sification cost to FP pixels than FN. Put simply, dangerous situations involving robots are
often arise when perception systems have an over-confident and inaccurate understanding
their surroundings.

In contrast, broadly speaking, perception systems that are under-confident are typically
overly-conservative in their estimation of what is a safe action. This leads to systems that
are possibly inefficient, but are less dangerous.

For these reasons, we argue that precision is more important than recall for misclassifi-

cation detection tasks, where we are trying to evaluate the quality and usefulness of uncer-
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tainty estimation for robotics. This means that we ideally want no FP pixels, even if that
means we have fewer TP pixels.
In order to encode this preference into our model evaluation, we use the Fg scores. More

specifically, we use the I'1/, score to represent our greater interest in precision over recall.

What about the other metrics?

PR and ROC curves show us the misclassification performance over the full range of thresh-
olds and the full range of misclassification costs. For this reason, the summary metrics
AUROC and AUPR aggregate the performance over all misclassification costs. This is an
important consideration as it is therefore possible to choose a model based on these met-
rics that might be sub-optimal for a specific context (with its specific weighting of different
misclassification costs). Nonetheless, they are useful metrics for giving a broad sense of the
quality of uncertainty estimation.

Misclassification detection accuracy, Ayip, similarly expresses no preference between FP
and FN. In contrast to the aforementioned curves, we consider the threshold at which Ayip
is maximised, i.e. MaxAyp, as opposed to aggregating the performance over all thresholds.
This gives a different perspective on quality of uncertainty estimation, and is useful when
we do not care about the relative misclassification costs. An example of when this might
occur is when the semantic segmentations are being used for localisation or mapping. In the
former of these cases, further post-processing steps such as RANSAC are being used, which
can reject F'P pixel themselves. Similarly, in the latter case, majority voting can reduce the
segmentation noise, turning possible FP pixels into TP.

We make the case that, in these applications, choosing the model that has the highest
MaxAyp is more appropriate. An important note, is that typically the values of p(a,c) at
which we have MaxAyp are typically higher than that of Max[F' ,, which is likely to be useful
in these applications, without compromising our wider trust of the system, as can been seen

in Section 5.4} Section [6.9]and Section [6.10
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Discussion: Class Distribution

It is an often cited benefit that PR and ROC curves are independent of the class distribution
of the test data. This means that in a binary classification problem, metrics based on these
curves are independent of the underlying proportions of how many data points belong to
each of the positive and negative classes.

Take the problem of disease detection for example. In this case, the class distribution is
represented by: p(disease) and p(healthy) in the population of patients. We do not want the
metrics to evaluate the best method to be conditioned on the rate of disease for one given
dataset, as then the method would be sub-optimal for another dataset. For this reason, is
important that the metrics are independent of p(disease) and p(healthy).

Our misclassification detection problem is a little different, as the class distribution is
represented by: p(accurate) and p(inaccurate). Although it is clearly true that we want to
pick the model with the best uncertainty estimation, we cannot choose it while ignoring
that we also need a model that can return pixels that are accurately segmented. Therefore,
the metrics we use must also allow us to pick model that produces high-quality semantic
segmentations, relating to having a high p(accurate). AUROC and AUPR obfuscate this
information, which leads us to also considering MaxF.,, @ p(a, c) and MaxAyp @ p(a, c).

MaxF1/, and MaxAyp allow us to consider the quality of uncertainty estimation for two
sets of misclassification costs, while p(a, ¢) informs us of how many pixels are actually as-
signed to the known classes as opposed to assigned to unknown. The former represents
how safe the model is, while the latter tells how useful the model is.

In addition to giving values for MaxF./, @ p(a, c) and MaxAyp @ p(a, c) in tables, we also

plot the full range of F./, and Ayp versus p(a, c).

4.2 SAX Semantic Segmentation Dataset

As part of the Sense-Assess-eXplain (SAX) project [132], a semantic segmentation dataset
was created, known as the SAX Semantic Segmentation Dataset. The purpose of the SAX
project was to develop methods along three themes: (1) the robust perception of environ-

ments, (2) the self-assessment of model performance for a given task and, (3) the explanation
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of performance to a human user. The work conducted in this thesis focusses strongly on the
first two of these themes.

In order to evaluate how methods satisfy each of the three themes, this project involved
collecting large amounts of driving data in unusual and challenging environments, and to
produce datasets with ground truth that can be used for model evaluation.

My contributions to this dataset were as follows: (1) The overall design of the dataset
- how the broader dataset is split into training and test datasets, which domains to include
data from, and specifically which images to use, (2) A significant proportion of the pixel-wise

labelling, which was done by hand using an internal tool of the Oxford Robotics Institute.

4.2.1 Dataset Motivation

In the interest of investigating how semantic segmentation quality degrades due to distribu-
tional shift, and how methods can detect this, a pixel-wise labelled segmentation dataset has
been created from some of this collected data. The dataset is split up by geographic domain,
so that we can compare metrics between each of the domains.

Due to the significant amount of time and effort required to label each image in a pixel-
wise manner, it was only feasible to label a set of images in the order of hundreds, and these
labelled images are therefore used as a test dataset. Segmentation networks can therefore
be trained on a labelled dataset from one domain, and then tested on the challenging SAX
domains to determine (1) the extent to which the performance degrades and (2) the extent
to which this can be mitigated via uncertainty estimation.

In addition to the labelled test datasets, the SAX Semantic Segmentation Dataset also
includes a large unlabelled dataset for each domain. This is motivated by the literature and
discussion in Chapter [3| where the idea of training with unlabelled OoD images is raised.
This can be investigated with the 100,000 unlabelled images included for each domain.

The successive sub-sections discuss the characteristics of the dataset, and how they allow
us to evaluate segmentation and uncertainty estimation quality for a range of novel methods

for training segmentation networks.
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4.2.2 Semantic Definitions

As described above, the desired use for this dataset is in conjunction with a pixel-wise la-
belled training dataset from another domain. We are interested in evaluating how the model
extends the visual semantic concepts defined in the labelled training dataset to the distri-
butionally shifted images in the test dataset. Therefore, across both the training and test
datasets, we want the pixels to be annotated with the same semantic classes.

For this reason, the test dataset was annotated in accordance with the labelling policy
used in the Cityscapes dataset [25]. This is because this labelling policy is a commonly used
standard for driving data, allowing interoperability with other datasets as well, such as with
BerkelyDeepDrive [63], KITTI [133] and WildDash [134].

In addition to how the images are labelled, it is also important to determine which im-
ages should be labelled from the large pool of collected images to make an informative test
dataset.

One possible objective for segmentation datasets is that training and test datasets are pre-
pared such that all the information required to perfectly segment the test dataset is provided
in the training dataset, i.e. the uncertainty is purely epistemic, and can be fully reduced for
the test dataset. This means that weather and illumination conditions do not corrupt the
images and no instances of OoD classes are present, or, if there are, they are labelled void
and ignored during training and testing. This is a useful setting for the evaluation of seg-
mentation network architectures, however is not reflective of deploying robot systems into
the real world.

By contrast, for the SAX test datasets, a conscious effort was made to include objects that
do not belong to any of the defined semantic classes. This is in addition to objects that belong
to the known classes, but look very different, which are very prevalent when the geographic
domain significantly changes. Another possible source of distributional uncertainty for the
SAX datasets is the sensor type, for which a PointGrey Bumblebee XB3 stereo camera was
used. By contrast, the Cityscapes dataset used a stereo camera with 3-inch CMOS 2 MP sen-
sors, namely OnSemi AR0331s. Each of these factors ensure that there will be distributional

uncertainty for us to investigate in the test datasets.
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4.2.3 Inclusion of multiple target domains

As discussed, this dataset is made up of sub-datasets, which are each collected in a given
geographic domain. Specifically, three geographic domains are considered: London, the
New Forest, and Scottish Highlands. These represent a spectrum of distributional shift from
an urban driving dataset, such as Cityscapes, with London being the most similar and the
Scottish Highlands being most different.

These datasets allow us to investigate how the quality of segmentation and uncertainty
estimation vary with the magnitude of the distributional shift. They also allow us to inves-
tigate how training with unlabelled data from each of these domains can help to mitigate
performance degradation on both of these fronts.

The rest of this sub-section describes each of the SAX domains in order to get a sense of
the nature of the distributional shift between these domains and other public datasets. For

examples from each domain see: Figure 4.1 Figure 4.2} Figure [4.3|and Figure |4.4|

SAX London

This domain is most similar in appearance and spatial distribution of classes to other urban
driving datasets. The likely differences in the appearance of the defined semantic classes
from other urban driving datasets include: markings on the roads, different architecture of
buildings, different signage. There are also a number of objects of undefined class, such as
bus stops, dogs, and road works. The conditions for this dataset vary from dry and overcast,
to dark and lightly raining, with the latter likely causing a larger distributional shift than the

former.

SAX New Forest

The New Forest domain is less urban than the London domain, as the images were collected
in small towns and their surroundings in a rural region of Southern Englandﬁ A major
difference between the New Forest and other urban driving domains is the distribution of
classes, i.e. terrain and vegetation are much more frequent in the former, while buildings,

traffic lights, and pedestrians are much more frequent in the latter. Given the rural nature of

https://www.thenewforest.co.uk/
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this domain, the road boundaries are less clear, and it contains many instances of unknown
classes such as horses, cows and donkeys, which are allowed to roam freel and so are

commonly found in and besides the road.

SAX Scotland

Images for this domain were collected in and around the Ardverikie Estatd’ in the Scottish
Highlands, and are the least similar to other urban driving datasets. This is because many
of the images were collected away from public roads and in very rural settings. This means
that the distribution of classes is different, as well as the classes themselves looking quite
different. A notable example of this is that the class road is often represented by dirt tracks
or gravel roads rather than paved streets. Another is that the terrain class in a dataset
such as Cityscapes refers to patches of grass, whereas in the Scottish Highlands the most

similar instances of terrain would instead be heather moorland®.,

4.2.4 Curation of the unlabelled SAX training datasets

As mentioned, each SAX labelled test dataset has an accompanying unlabelled training
dataset. Each of these unlabelled datasets contain approximately 100,000 images. Given
a dataset of this size, careful curation of which images should and should not be included
would be extremely time-consuming. Therefore, the only curation performed was to remove
any images that are too close in time or location to the labelled test images.

The dataset was obtained by uniformly sampling at a frequency of 4 Hz from a pool of
videos collected by the data collection vehicle. Which videos are chosen was broadly guided
to get a range of different environments within a domain, and the number of videos was

chosen such that sampling in this manner yields 100,000 images.

3https://www.newforestnpa.gov.uk/discover/commoning/the—animals/
4https://ardverikie.com/
Shttps://en.wikipedia.org/wiki/Moorland
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4.3 Other Driving Datasets

Additional datasets are used, which define source and target domains, where the source
domain provides labelled training images and the target domain is distributionally shifted
from the source domain, and provides labelled test images and (optionally) unlabelled train-

ing images.

4.3.1 Cityscapes

The Cityscapes dataset [25] contains 5000 pixel-wise labelled images, with a 60 % - 10 % -
30 % split between train-val-test. They are collected in 49 German cities and one Swiss city
in the daytime, in bright but not sunny conditions and during the spring, summer, and au-
tumn. The semantic class definitions used in Cityscapes are used in all of our experiments,
and are defined as follows (the colour denotes the visualisation colour seen in figures): Ex-

amples from this dataset can be seen in Figure

. T .
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4.3.2 Berkeley DeepDrive

Berkeley DeepDrive (BDD) [63] uses the same semantic definitions as Cityscapes, although
the classes are visually different due to collection in Berkeley, New York, San Francisco,
and the Bay Area. Additionally, images are collected in the day and night, and in rainy,
snowy, and foggy conditions, in addition to clear and overcast. This means that BDD is a
much more diverse dataset than Cityscapes. It is also larger, as it contains 10,000 pixel-wise
labelled images with a 70 % - 10 % - 20 % split for train-val-test. There is also a larger BDD
dataset, named BDD-100k, which contains 100,000 unlabelled images.
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We use BDD in a variety of ways including: (1) as a target test domain, where only the test
split is used, and the labelled training dataset from another domain is used, (2) as a target
training and test domain in which the 100,000 unlabelled images are used for training, while
the labelled test split is used for testing, (3) as a source training domain, where the labelled

train split is used for training instead of Cityscapes. Examples from this dataset can be seen

in Figure

4.3.3 WildDash

WildDash [134] is a dataset of 4256 pixel-wise labelled images that are collected from dash-
cams mounted on vehicles all around the world. In contrast to the other datasets, this dataset
is designed to be used only as a labelled test dataset. It is the most diverse of any of the
datasets considered as it contains rural and urban scenes from each continent, and in a vari-
ety of weather and illumination conditions. It is therefore a significant challenge to produce
both high-quality segmentations and uncertainty estimates, and is a useful benchmark in

assessing the generality of both. Examples from this dataset can be seen in Figure 4.6|

434 KITTI

KITTT [[133] is collected in Karlsruhe, Germany and the semantic segmentation portion con-
tains 400 pixel-wise annotated images in a 50 % - 50 % train-test split. This is therefore not
a dataset with significant diversity, as it is a small dataset collected within urban and semi-
urban Karlsruhe. In addition to this dataset, there are also KITTI raw logs containing many
more unlabelled images, split into separate sequences for each sub-domain: City, Residen-
tial, Road, Campus, Person, Calibration.

We use KITTI domain data in the following ways: (1) it is used as a target test dataset
in which the train split is used, as the test labels are withheld for testing on their servers,
(2) the KITTI raw images are also used as an unlabelled target training dataset, with testing
occurring on the labelled train split as in (1). The raw images for this unlabelled dataset are
chosen such that the images are from the same sub-domains, but not from the same sequence
as the images in the used test dataset (again, we in fact use the train split). Examples from

this dataset can be seen in Figure [4.6|
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(b) SAX New Forest

(c) SAX Scotland

Figure 4.1: Example test images (left) and ground-truth (right) from each of the domains in
the SAX Semantic Segmentation Dataset
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Figure 4.2: Examples from the SAX London test dataset (with the labels omitted). Images
are chosen for each row, such that the instances in these images cause the rows to exhibit
increasing distributional shift from top to bottom.
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Figure 4.3: Examples from the SAX New Forest test dataset (with the labels omitted). Images
are chosen for each row, such that the instances in these images cause the rows to exhibit
increasing distributional shift from top to bottom.
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Figure 4.4: Examples from the SAX Scotland test dataset (with the labels omitted). Images
are chosen for each row, such that the instances in these images cause the rows to exhibit
increasing distributional shift from top to bottom.
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Figure 4.5: Examples from the Cityscapes training dataset.
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(c) WildDash

Figure 4.6: Example test images from Berkeley DeepDrive, KITTI and WildDash datasets.
The examples are chosen such that the distributional shift with respect to Cityscapes in-
creases from left to right.
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This chapter presents a method that uses a large-scale image recognition dataset as a
source of OoD data to learn distributional uncertainty estimation via OoD detection. It
achieves this by defining a challenging OoD detection task using data augmentation to
tuse in-distribution and OoD images into the same image. A segmentation network is then
trained to solve this OoD detection task using a variation on the typical contrastive loss,
and is evaluated on its ability to detect error on distributionally-shifted test datasets. This

method was published as:

e D. Williams, M. Gadd, D. De Martini & . Newman, Fool Me Once: Robust Selective
Segmentation via Out-of-Distribution Detection with Contrastive Learning, Interna-

tional Conference on Robotics and Automation (ICRA), 2021

5.1 Motivation

This work primarily draws on the outlier exposure literature, presented in Section[3.5.6} In
addition to in-distribution data, these works train on OoD data such that the representation
between the two is separable. As previously stated in Section |3.5.6, the objective for this is

often formulated as follows:

L = By, [H(y}. p(yl2))] + Ep, [KL[Uniform{0, K — 1} || p(y|2)] (5.1)

Where the first term of L°F is the classification loss which minimises the entropy of p(y|z)
over pi,, i.e. the data distribution defined by the in-distribution dataset. The second term
minimises the distance between p(y|x) and the uniform distribution over poy, i.e. the data
distribution defined by the OoD dataset, thereby maximising its entropy over this data dis-
tribution.

As presented in [128]], [129], the key observation in this literature is that different OoD

datasets result in very different OoD performance, and so the nature of the data is a key
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factor to consider. This motivates the method in this chapter to leverage existing datasets
that are very large and diverse, in combination with data augmentation.

Datasets such as ImageNet [97] or LAION [135] attempt to approximate the set of all
natural images, and are typically used to train neural networks to extract general semantic
features from natural images that can be fine-tuned to solve many computer vision tasks.
These trained neural networks are often evaluated on large-scale image recognition chal-
lenges, such as ImageNet [97].

The idea to leverage these datasets comes from framing OoD detection as a simplified
version of large-scale image recognition. While these recognition problems require class
assignment to some approximation of all possible classes, OoD detection requires assign-
ment either to the classes defined in the in-distribution training dataset or to the ‘unknown’
class. The fact that the sub-classes of the ‘unknown’ class, i.e. all semantic classes besides
those defined as in-distribution, need not be differentiated is what leads to the simplifica-
tion as compared to large-scale image recognition problems, i.e. we might say that the OoD
instances need to be detected, but not recognised.

Although simpler than large-scale recognition, this OoD detection task is still very chal-
lenging due to the enormity of the set of OoD instances. In this chapter, we therefore hypoth-
esise that large-scale datasets can be a key part of solving this problem. A popular method
for leveraging this type of dataset uses both contrastive learning and data augmentation.
The work in this chapter draws inspiration from this work, and adapts it for the task of OoD
detection.

Another key difference between large-scale image recognition challenges, such as Ima-
geNet, and the task in this chapter, is that we seek to detect in-distribution and OoD in-
stances on a pixel-wise basis. This requires adapting both the OoD detection training task,

and also the objective used to solve this task.

5.1.1 Contrastive Learning

Contrastive learning defines a set of objectives which compare data points that are either
positive or negative, where the positive data points should all be represented similarly and

differently from negative data points. For computer vision, the positive and negative data
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points are typically generated using data augmentation in what is referred to as an instance
classification task. Each image has a single positive pairing, which is the augmented version
of itself, while all other images would be considered negative.

The type of data augmentation used generally involves using a crop and resize to the
original spatial dimensions, along with a wide array of colour-space augmentations. This
yields two images that contain the same semantic content on an image-wise basis, while
looking very different (often referred to as different ‘views’ of the same image). Therefore,
if a neural network represents both of these images similarly, then it must have learned an
image-wise semantic representation of images.

Negatives are used to prevent a training failure mode known as ‘feature collapse’. This
occurs when the model learns to reduce the loss by ignoring the input images, and out-
putting the same feature vector for any input. When the loss is only calculated between
positives, this is a solution that minimises the loss, and so occurs frequently. Therefore, the
loss between positives and negatives is included to prevent this failure mode.

For a pair of positives, we cannot ensure that each of the negatives are of a different
semantic class, as we do not have labels for the training dataset. This is what makes this
formulation ‘instance classification’, rather than image classification, as each image is essen-
tially defining its own class. Nonetheless, this approximation has been shown to empirically
lead to representations suited to large-scale image recognition [32], [106]. Additionally, [136]
explores how negatives provide a component of the loss that maximises the uniformity of
the learned feature representation, which is shown to be a useful characteristic. In a similar
vein, [116] uses contrastive learning to learn task-agnostic information, which is needed to
discriminate between instances belonging to the same class. This is shown to improve a
network’s representation for OoD detection.

The contrastive objective can be calculated for a pair of positive features (z;, z;) denoted

by (i,7):

exp(2; z;/7)
LiC(_)n = —log v 7 5.2)
7 Zk,k;éi exp(z;' 2x/7) (

This can be viewed as a cross-entropy classification objective applied to instance classifi-
cation, where the logits are calculated by feature similarity. The cosine similarity is typically

used, and so ||z]|s = 1.

83



The method in this chapter uses this type of loss for the problem of learning a separable
representation between in-distribution and OoD data. More specifically, it needs to do this at
a pixel-wise level, such that the pixel-wise embeddings of in-distribution pixels are distinct

from OoD pixels.

5.1.2 Training Data

in

ou

X
(a) (b)

Figure 5.1: An illustration of the definitions of the in-distribution and OoD datasets in Sec-
tionm In (a), X is the set of all possible images, and within it we can define a domain D,
which is defined by a set of classes K and their appearance. X}, is the set of all images that
contain instances of classes in K with the appearance defined by domain D. X7, is the set of
pixels within X7}, which belong to the classes in K. Finally, the ideal datasets, D}, and D},
can be defined by X7, and the rest of pixel space respectively, as shown in (b), along with
their ground-truth.

Firstly, along with Figure[5.1} this section considers what we mean by in-distribution and

OoD by defining idealised datasets of each: D;, and D}

out*

They are defined as ideal, in the
sense that they would allow us to fully solve the task of OoD detection|| via straightforward
supervised learning.

For the in-distribution dataset, let us define a domain D, which is a high-level descrip-
tion of the context and conditions in which a set of semantic classes K are captured with a
given sensor, e.g. a domain could be: RGB images of driving in London, in dry, overcast
conditions, during summer. Note that the domain describes the appearance of the semantic
classes in the data collected for this domain, and is not exclusive to conditions of the domain,

i.e. a car imaged in Manchester could still be in the example domain above if it has the same

! Assuming we have a sufficiently expressive neural network and an appropriate optimizer.
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appearance as those in London and in the described conditions.

Using the domain D, we can then define X}, (see Figure5.1) which is the set of all images
which include instances from the domain D. Note that the images in X}, might not entirely
be composed of instances with a semantic class in K, therefore not every pixel is considered
in-distribution. Therefore, we define the in-distribution dataset with D}, = {X%,, Y}, where
X5 ={x; | (x; € xp,xp € X},),y; € K}, i.e. all the pixels in X}, that correspond to the classes
in K, and Y7, are the corresponding pixel-wise labels describing which of the K classes the
pixels belong to.

Considering the definition of what is in-distribution, we can then define the set of all OoD
images, as any image that is not from the domain D, therefore approximately X7 , = X - X7,
where X is the set of all images. However, for completeness, we also have to define this on
a pixel-wise basis as there were pixels that were OoD in X},. Therefore, X* . = {x; | (x; €

out

xp,Xp € X5),yf ¢ K} U{x; | (x; € Xout, Xout € X})}. The OoD dataset is then given

out

by D}, = {X!. You), where Y7, are the corresponding pixel-wise labels, which simply

denote that each pixel is OoD.

This definition of D*

.t demonstrates the enormous size and diversity of the ideal OoD

dataset. Factoring in the difficulties of pixel-wise labelling, the resource cost of obtaining

%
out

a good approximation of I}, is prohibitively expensive. For this reason, what is instead
available is small datasets of pixel-wise labelled images for a given task, or large and diverse
datasets of natural images that contain image-wise or no annotation.

Given the size of D*

o we make the determination that small specific datasets are insuf-

ticient for this task, and so must consider how the latter can be used. The problem with
this type of dataset is that the lack of pixel-wise labelling means that we do not know which
pixels are OoD in any image. For this reason, we must make the approximation that the
entirety of this dataset is OoD, introducing label noise into the problem. It also means that
instead of in-distribution and OoD instances being within the same image as is the case in
the test datasets, they are separated into different images, i.e. we have image-wise labels for
in-distribution and OoD. Training on this type of dataset will generalise poorly to pixel-wise
distributional uncertainty estimation at test-time.

Each of these problems are addressed and mitigated in the proposed method, by using a
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Figure 5.2: For the method described in Section this figure depicts the network architec-
ture and the losses used to train the model.

new objective to combat label noise, and data augmentation to combine in-distribution and

OoD images.

5.2 Proposed System Design

5.2.1 Overview

The network architecture for this method is found in Figure[5.2 The encoder E embeds an
image x € R¥» XV resulting in feature map z € R™*#*W where H,W and H,W are the
original and reduced spatial dimensions respectively. As part of the contrastive task, these
features z are projected by a two-layer MLP projection network g, yielding projected features
7 € Rfextl XW, of the same spatial dimensions, but different feature length. A decoder D takes

the features z as input, and segments them to give logits 1 € R¥*#*W.

5.2.2 Objective Function

Firstly let us consider the loss [SupCon presented in [137], which is a supervised contrastive
loss applied to image classification and a generalisation of the contrastive loss presented
as L°°" in Equation . It maximises the cosine similarity between features belonging to
the same class, and minimises the cosine similarity between features belonging to different
classes. It reduces to the instance classification contrastive loss L when each image and
its augmentation is its own class.

Let’s consider a batch element a € B, where B € RP*3*#xW ig 3 batch of B images. For q,
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all features belonging to the same class as a are considered as positives, which are: 2, where
b € B and y, = y,. Then, since all features vectors are normalised as ||z||s = 1, it calculates
the cosine similarity between the feature for the element in question z, and the features of
the same class z;, as z, 2,. The cosine similarity is also calculated between z, and features
belonging to other classes, i.e. z. where c € B and y. # y,, which are treated as negatives.

These similarities are combined in the form of the softmax function, where the scores
to be maximised are on the numerator, while all scores are on the denominator, and all are
exponentiated. Therefore the way to minimise the loss is to maximise the similarity between
%, and z;, and to minimise the similarity between z, and z..

This loss is calculated for a given element in the batch a € B:

J,SupCon _ Z —log XD (2, 2/7) (5.3)
: .
>oexp(zlz/T)+ > exp(za/T)
beB:b#a,yp="Ya CEBe#Ya @ beB:b#a,yp="Ya ¢

The total loss per batch, L5"P¢°n is calculated over batch elements as:

1
J,SupCon Z - LzupCon (54)

acB = Yo

where N, is the number of features vectors that belong to the same class as a, therefore

N,,—11is the number of positives.

Application to OoD Detection

OoD detection can be viewed as a binary classification problem, where the two classes are
OoD and in-distribution.

Applying LS to this binary classification problem naively would result in cluster-
ing both in-distribution and OoD instances in feature space. Given that the OoD dataset
is extremely diverse, clustering in this way is very challenging. Therefore, in designing the
objective for this method, we instead treat OoD instances only as negatives, such that, in fea-
ture space, they are pushed away from positive in-distribution instances, but are not pulled
towards each other. The result of this is a one-class contrastive learning objective, with the
in-distribution class being the superset of all classes defined in the semantic segmentation

problem.
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If ‘in-distribution’ is defined as the positive class (y = 1) in the classification problem, we

can define the objective, LO°P" as:

N

1
LOODCOH _ Z ~ - LCCL)ODCOH (55)
a€B:y,=1 Ya=1 "

7 OoDCon _ Z Clog &P (24 2/7) 6)
' be B:b#a,yp=1 > exp (2, 2/T)
R cEB:c#a

In this way, the cosine similarity is never maximised between OoD features. As for the
maximisation of the similarity of features that are in-distribution, this means that we are
training the model to minimise the semantic class differences. By contrast, the supervised
learning objective encourages the classes to be maximally separated, therefore it is possi-
ble that LO°Pn could decrease segmentation performance. This is, however, not the case,
thanks in part due to the projection network, meaning LO°Pn is calculated on features pro-
jected from those used in semantic segmentation. This projection is performed by a 2-layer
MLP projection network g such that z = g(z) and z € R” e HxXW where F, is the projected
tfeature length. Additionally, [138] suggests that maximising the similarity between the em-
beddings of all classes leads to useful regularisation and learning of class- and task-agnostic
information, which is useful for OoD detection as discussed in Section

Therefore, in actual fact, LO°PC is given by:

N
LOoDCon — 1 LSODCOH (57)
a€B:y,=1 Nyazl -1
(24 2/7)
7,00DCon _ Z “log CXP (Zq 26/ T (5.8)
beEB:b#a,yp=1 Z eXp (zc—erC/T)
’ ’ ceB:c#a

Where 2 € R’z is a projected pixel-wise feature.

Overall Objective
This contrastive objective is combined with the cross-entropy segmentation objective L* to

give the following overall objective, L:

L =158 T /\LOODCon (59)
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Where ¢ = Zf:[:l ZZIZW y* log p(y|z), as described in Section and A\ = 0.1 to balance

the magnitudes of each constituent objective, which we found to work well empirically.

5.2.3 Masking Label Noise

As we use a large-scale unlabelled image dataset, there will possibly be some semantic over-
lap between this and the smaller labelled dataset. If this is true, LO°P°" then minimises the
similarity between features from images that are ultimately very similar, thereby resulting
in the learning of features that are less sensitive to semantics. In order to avoid this, we
introduce a method for mitigating this problem.

We augment the LO°P°" objective by introducing M™ in the following way:

AT »

e B exp (2, 2/7) 5.10

o > T MINexp (5] 2./7) >
beB:b#a,yp=1 cEB:c#a

where this binary mask MY, for a given in-distribution element a and OoD element ¢, is

calculated as:

0 if max(2)2.) >tgandy. =0
MM = (5.11)

1 otherwise
This mask is 0 when the similarity between an in-distribution feature vector and OoD fea-
ture vector exceeds a threshold tz. Therefore, ty is a hyperparameter that rejects a certain
proportion R of the OoD features in the batch. Here, R is referred to as the rejection ratio.
In [137], it is noted that the gradient contributions of hard positives and negatives dom-
inate the batch updates. Therefore MY reduces the impact of false hard negatives, i.e. fea-
tures that are similar according to ground-truth but are falsely associated with different

classes in our approximate labelling.

5.2.4 Data Augmentation

As discussed previously, the datasets we have for training are comprised of labelled im-
ages that are in-distribution and unlabelled images that are defined as entirely OoD. If the
training task were set up such that the model had to classify pixel-wise features as either

in-distribution or OoD but the input images were entirely of either class, then this task is no
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(b) In-Distribution — OoD

|

(¢) OoD — In-Distribution (d) OoD — OoD

Figure 5.3: Examples of training images generated via our OoDMix data augmentation.
Each combination of crop and background is shown across the sub-figures (denoted by Crop
— Background)

more difficult than image-wise OoD detection. Therefore, it is highly likely that the model
would, at test time, generalise poorly to difficult pixel-wise distributional uncertainty esti-
mation.

For this reason, the in-distribution and OoD images need to be combined during training
in such a way to make the training task more difficult. This is achieved by devising a data
augmentation scheme specifically for this setting. It initially comprises of cropping images

from one dataset into another, i.e. OoD into in-distribution, in-distribution into OoD.
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This, however, only makes the problem slightly more difficult, as this can be solved by
detecting the crop and then treating crop and the background separately, and thus is again
similar to image-wise OoD detection. Detecting the location of the crop is simple due to
the large gradients at the crop boundary, and the large colour-space differences between the
in-distribution and OoD dataset.

We take several steps to make this more challenging. Firstly, we can also crop in-distribution
into in-distribution and OoD into OoD, as this prevents the detection of a crop’s origin from
its background. We can also remove the large gradients found at the crop boundaries by
combining the crop and background with a Gaussian blur kernel. Lastly, the images are
transformed into HSV space, and the colour of the crop is adjusted such that the mean hue
and value are the same for the crop as that of the pixels they are replacing in the background.

Each of these steps blend the OoD crop into in-distribution images and vice versa, in
such a way that the problem of representing them differently is made much harder. The
result is thus a model that can more robustly separate in-distribution and OoD instances.
See Figure 5.3|for examples of augmented images.

As per more traditional data augmentation, the final step is then to perform random

colour-space augmentations, namely ColorJitter in PyTorch [139].

5.3 Experimental Setup

This section describes the specifics of the datasets and neural network architectures used in

the experiments presented in Section [5.4}

5.3.1 Datasets

The labelled in-distribution, i.e. source, dataset in this work is Cityscapes [25], as described
in Section|4.3.1} The source dataset also contains a small proportion of pixels that are consid-
ered as void, i.e. they were not annotated due to ambiguity or not belonging to the defined
classes. For this reason, they are treated as OoD.

ImageNet is used as the unlabelled OoD, i.e. target, training dataset, which contains

1000 classes with approximately 1000 images for each. Image-wise labels are provided for
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these images, however we do not make use of them. This is because we have developed
our training algorithm to not require such labelling, allowing it to use unlabelled datasets,
which are typically much larger and more diverse, e.g. LAION-5B [135]. Not only this,
an image defined as the ImageNet class hummingbird can have many pixels belonging
to the Cityscapes semantic class vegetation, meaning that according to the image-wise
labels, the entire image is OoD, however the majority of the pixels are indeed in-distribution.
ImageNet also contains images of the Cityscapes known classes, e.g. cars, buildings, and
some of these will have similar appearance as those in Cityscapes, which contributes to the
label noise discussed and mitigated in Section [5.2.3|

Testing primarily occurs on the driving dataset WildDash [134]. As discussed in Sec-
tion [4.3.3) WildDash is an extremely diverse driving dataset, and so is the most appropriate
dataset to evaluate the distributional uncertainty estimation performance across the breadth
of driving data.

We perform additional testing on the SAX test datasets, discussed in more detail in Sec-
tion 4.2 which are narrower datasets with an increasing distributional shift with respect to
Cityscapes in the following order: SAX London, SAX New Forest, SAX Scotland. These
test datasets allows us to investigate how the magnitude of distributional shift affects the

performance of each method.

5.3.2 Network Architecture

h
=
X z—>—>lp<>Ls
>—>24:LOODCOH
]
g

Figure 5.4: A depiction of the network architecture including the specific modules used to
define the encoder and decoder: E = ASPP o ResNet and D = h respectively.

The segmentation network architecture used in the experiments for this method is DeepLabV3+
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[140]. It is split into encoder and decoder, for which a ResNet-18 [35] and Atrous Spatial
Pyramid Pooling (ASPP) module is used respectively. In the implementation used in this
worlﬂ an additional segmentation head is used on top of the ASPP decoder.

In contrast to the definitions in [140], we define the encoder as E = ASPP o ResNet, i.e.
as both the ResNet and the ASPP module. The decoder D is then simply the segmentation
head, h. These changes can be seen in Figure[5.4, which elaborates on Figure[5.2|

The encoder E is therefore represented by the following transform: E : R¥»> W
R256xHxW j e the dimensionality of the features are 256 and the downsampled spatial di-
mensions are (H, W), where H = L and W = ¥.

The decoder D, implemented as the segmentation head h, is a single 1 x 1 convolutional
layer which returns the downsampled logits. Therefore, D : RZ6*HxW _y REXHXW which is
followed by bilinear upsampling to give the final logits of size R *#*W.

As mentioned in Section [5.2.2} this method also employs a projection network g, which
is a two-layer MLP, represented by the following transform: g : R26xHxW _y RIZxHXW _,
RF* AW where Fy = 128. This projection network g is regularised with a dropout layer
with a dropout ratio of 0.5.

By using our definition of E, we calculate the contrastive loss on features that are pro-
jected from much deeper in the network. This enforces z, which is only a linear transforma-
tion away from the logits 1, to encode information suited to solving the contrastive task, as
well as semantic segmentation-specific information. Empirically, this leads to better distri-
butional uncertainty estimation with p,,.x, because this additional semantic segmentation-
agnostic information helps to spread out probability mass in p for OoD instances. This is
in contrast to using features after the ResNet, i.e. E = ResNet, which were empirically less

effective as the ASPP module is likely filtering out all but the semantic segmentation-specific

information, leading to decreased misclassification detection performance.

5.4 Experiments and Results

This section details the experiments designed to evaluate the method presented in this chap-

ter, and presents the results in Table[5.2} Table|5.1} Table 5.3 Table[5.4/and Figure|5.5

2Based onhttps://github.com/qubvel/segmentation_models.pytorch
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5.4.1 Data Augmentation Experiments

In this chapter, we have introduced a data augmentation scheme that combines in-distribution
and OoD images into the same image, in such a way that the task of separating the two is
made more difficult. By increasing the difficulty of the OoD detection training task, this
chapter has argued that we can expect increased robustness from our model for this task.

We empirically determine that this is true by training a model on three variants of data
augmentation: ImageWise, CutMix and OoDMix. In ImageWise, in-distribution and OoD
images are included as separate images in a training batch, as is seen in [51]], [128]]. CutMix
is based on a regularisation method presented in [141] and crops images into other images,
but does not align them in colour-space or blur the edges of the boundaries between crop

and background. Finally, OoDMix is our proposed data augmentation scheme, described in

Section

5.4.2 Data Augmentation Results

Using our proposed training algorithm, we train models using each of the data augmenta-
tion schemes described in Section [5.4.1] In Table|5.1} we can see that using OoDMix results
in significantly better misclassification detection in terms of AUPR for each of the distribu-
tionally shifted domains compared to CutMix and ImageWise. The same is also true for
MaxF1, and MaxAyp, as shown in Table [5.3)and Table As an example, for WildDash,
the MaxF./, for OoDCon-0OoDMix is 0.801 versus 0.634 and 0.670 for OoDCon-Cutmix and
OoDCon-ImageWise respectively, and for the much higher p(a, c) of 0.432 versus 0.234 and
0.223. These results show that increasing the difficulty of the training task via the data aug-
mentation scheme proposed in this chapter yields a model that is better able to discern be-
tween in-distribution and OoD pixels, and therefore detect error on distributionally shifted

test datasets.

5.4.3 Objective Function Experiments

In order to investigate the effectiveness of our proposed objective function L°°P<°", we com-
pare it to baselines which use the same data augmentation scheme. The first baseline is KL,

seen in [129] and Equation @D Secondly, we consider VoidSeg, where the model outputs
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additional predictions for the void class, and is trained to segment the data augmented
OoD pixels as void. Instead of pyax, this method uses (1 — p(y = void|x)) as the model con-
tidence. Finally, this method also considers a network trained only with the cross-entropy
segmentation loss L°, named Vanilla.

Additionally, we consider two variants of our proposed objective: OoDCon and OoDCon-LN,
with the latter having a rejection ratio R of 0.2, and the former of 0, i.e. every element of M"Y

is 1, and thus label noise is in no way mitigated.

5.4.4 Objective Function Results

Table[5.1] Table 5.3/and Table 5.4, suggest that 0OoDCon-LN is the best performing objective
function for SAX New Forest, SAX Scotland and WildDash, which are the most distribution-
ally shifted domains. For WildDash, the MaxF., @ p(a,c) of 0OoDCon-LN-OoDMix is 0.809
@ 0.439, versus 0.801 @ 0.432 for OoDCon-00DM1izx, therefore, for this threshold, more seg-
mentation error is being detected and fewer pixels are being rejected as unknown as a result
of the label noise mask.

However, OoDCon, i.e. when R = 0, performs better in terms of MaxF./, and MaxAym
for SAX London, which is relatively similar to Cityscapes. This is possibly due to the in-
herent trade-off in using the label noise mask, which is between the quantity of label noise
and the magnitude of the enforced separation between the in-distribution and OoD dataset.
When R is lower, the effective label noise for the task is higher, however there is a greater en-
forced separation between the two datasets. In the case of smaller distributional shifts on the
test dataset, it is perhaps more important to enforce a more aggressive separation between
datasets during training than to remove label noise. By contrast, for larger distributional
shifts on the test dataset, it is perhaps more important to remove label noise as there already

exists a larger separation between source and target domains.

5.4.5 Data Diversity Experiments

In this chapter, we have opted to use a large-scale image dataset due to the discussion in
Section 5.1.2, which demonstrates the enormity of the set of possible OoD images. In order

to empirically determine the benefit of this diversity in the OoD training dataset, we use a
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subset of the ImageNet dataset.

This dataset includes 10 classes instead of 1000, resulting in a dataset of 13,000 images.
The 10 classes were selected as the closest classes to those in the CIFAR-10 dataset (as deter-
mined by [142]), which is a commonly used small-scale image classification dataset. We use
this subset of ImageNet instead of CIFAR-10, due to the latter’s significantly smaller image
resolution. The classes considered are as follows: airliner,beach wagon, hummingbird,
siamese cat,ox,goldenretriever,tailed frog, zebra,container ship,trailer
truck.

This dataset is used with OoDMix data augmentation for direct comparison with the
OoDCon-0oDMix experiments, and the results for this experiment can be found with the

name SubSet.

5.4.6 Data Diversity Results

By comparing results for OoDCon-0oDMix and OoDCon-SubSet, we can see that adding
diversity to the OoD training dataset improves distributional uncertainty estimation. For
almost every distributionally-shifted domain, the addition of the extra 990 classes improved
almost every misclassification detection metric. Specifically, for WildDash, the MaxF., @
p(a, c) was 0.801 @ 0.432 for OoDCon—-0oDMix, while it was only 0.761 @ 0.370 for OoDCon-SubSet
with the reduced dataset, therefore fewer inaccurate pixels are detected and fewer pixels
were confidently and correctly segmented by the latter.

The performance using the ImageNet subset still outperformed Vanilla on all metrics,
showing that using the reduced ImageNet dataset was beneficial, however it is simply less

beneficial than using a larger-scale dataset.

5.5 Conclusion

This chapter presented a method that posed distributional uncertainty estimation as a sim-
plification of a large-scale image recognition problem, and correspondingly leveraged a
large-scale image dataset. The method defines a training task that combines in-distribution

and OoD images using data augmentation, and then a segmentation network is trained to
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Figure 5.5: Misclassification detection performance evaluated for three metrics over a range
of domains. The left-most domain is the in-distribution Cityscapes domain, and provides
the labelled training dataset for learning semantic segmentation. From left to right, the
SAX domains are increasingly distributionally-shifted from Cityscapes, and so these plots
measure the models’ ability to detect regions of segmentation error which are increasingly
arising from left to right due to distributional shift. The WildDash plots present the models’
quality of uncertainty estimation on a very diverse distributionally-shifted driving dataset.
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AUPR

Method CS LDN NF SCOT WD

@ Vanilla 0926 0.717 0.635 0.527 0.712

% KL-OoDMix 0.960 0.891 0.889 0.728 0.810
<

M VoidSeg-OoDMix 0941 0.896 0.892 0.602 0.767

KL-ImageWise 0907 0.636 0434 0.239 0.610

" KL-CutMix 0938 0.545 0.392 0.200 0.528

é KL-Subset 0935 0.856 0.865 0.680 0.775

§ OoDCon-ImageWise 0.908 0.767 0.714 0472 0.711

OoDCon-CutMix 0940 0573 0488 0.255 0.680

OoDCon-Subset 0914 0.843 0.810 0.639 0.820

® OoDCon-0OoDMix 0904 0.864 0.882 0.684 0.862

5 OoDCon-LN-OoDMix 0.893 0.878 0.896 0.750 0.872

Table 5.1: Misclassification Detection performance in terms of AUPR for a range of test do-
mains.

differentiate between the two. Although the training task is OoD detection, the trained seg-
mentation networks are evaluated on their ability to perform misclassification detection, i.e.
the test setting considers uncertainty estimation, rather than OoD detection.

The experiments in this chapter show that the following factors are important for learn-
ing pixel-wise distributional uncertainty estimation: (1) the magnitude of the visual differ-
ence between in-distribution and OoD pixels, and (2) the diversity of the OoD dataset.

The first factor is supported by the literature [128], [129], and makes intuitive sense, as
when the in-distribution and OoD are more similar, the training task of separating them is
more challenging, yielding a more robust model. As for the second factor, adding diver-
sity to a dataset is a common method for achieving a more general model, however, this is
even more important for this problem due to the enormous diversity of the set of all OoD
instances, as discussed in Section |5.1.2

By choosing a large-scale image dataset in this chapter, we have optimised for the second
factor and have tried to optimise for the first factor using data augmentation. Nevertheless,
we hypothesize that there are better ways of optimising for the first factor, i.e. methods
for defining a more challenging training task of this kind. As discussed in Section [1.4] this
hypothesis is a key driver of work in Chapter |6 and Chapter [} in which distributionally

shifted driving data is used instead of a large-scale image recognition dataset.

98



AUROC

Method CS LDN NE SCOT WD

2 Vanilla 0824 0723 0.686 0674 0728

%.i KL-OoDMix 0874 0777 0765 0.760 0.751
©

B VoidSeg-OoDMix  0.889 0785 0769 0.677 0.653

KL-ImageWise 0827 0738 0.653 0587 0.713

} KL-CutMix 0847 0732 0.682 0641 0748

g KL-Subset 0850 0726 0751 0754 0.736

,:S OoDCon-TmageWise 0.857 0790 0764 0705 0.762

OobCon-CutMix  0.848 0.697 0.679 0.600 0.717

OoDCon-Subset 0788 0740 0726 0.736 0.775

2 OoDCon-OoDMix 0759 0732 0.761 0713 0.795

8 OoDCon-LN-OoDMix 0.745 0.758 0.782 0.738 0.799

Table 5.2: Misclassification Detection performance in terms of AUROC for a range of test
domains.

MaxF:/, @ p(a, c)

Method CS LDN NF SCOT WD
8 Vanilla 0.864 @ 0.585 0.726 @ 0.395 0.687 @ 0.370 0.555@0.205 0.717 @ 0.364
Ti KL-OoDMix 0.909 @ 0.678 0.808 @0.485 0.808 @0.501 0.685@ 0.210 0.736 @ 0.354
©
M VoidSeg-OoDMix 0910 @0.672 0.818 @0.480 0.816 @ 0.503 0.592 @ 0.241 0.701 @ 0.456
KL-ImageWise 0.844 @ 0.506 0.603 @(0.180 0-428-@0-100 0261-@0:048 0.572@0.156
. KL-CutMix 0.872 @ 0.561 0:522@0-:082 0397@0:060 0253@0016 0524@0085
,f_ib KL-Subset 0900 @0.678 0.793 @ (0.528 0.796 @ 0.497 0.637 @0.184 0.710 @ 0.312
é OoDCon-ImageWise 0.888@0.592 0.722@0.236 0.676 @ 0.233 0:457@0:092 0.670 @ (0.223
OoDCon-CutMix 0.891 @0.638 0.552@0.160 0.482@0.104 02A4-@0034 0.634 @0.234
OoDCon-Subset 0.884 @0.690 0.805@0.544 0.791@0.518 0.618@0.176 0.761 @0.370
) OoDCon-0oDMix 0.88@0.708 0.825@0.599 0.834@0.594 0.642 @0.245 0.801 @ 0.432
8 OoDCon-LN-OoDMix 0.876 @0.705 0.822@ 0.573 0.841@ 0.579 0.691 @ (0.263 0.809 @ 0.439

Table 5.3: Misclassification Detection performance in terms of MaxF.,, @ p(a,c) for a range
of test domains. Entries are struck out if their p(a, c¢) is too low, as this threshold value leads
to the assignment of class to too few pixels.
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MaxAyp @ p(a, )

Method CS LDN NF SCOT WD
8 Vanilla 0.798 @ 0.682 0.689 @ 0.444 0.668 @ 0.396 0.657 @0.164 0.689 @ 0.405
% KL-OoDMix 0.855@0.755 0.733@0.599 0.728@0.606 0.726 @ 0.231 0.685 @ 0.444
©
M VoidSeg-OoDMix  0.866 @0.770 0.738 @0.606 0.739 @ 0.645 0.644 @ 0.217 0.640 @ 0.562
KL-ImageWise 0771 @ 0.603 0.707 @ 0.170 0732-@0-03%F 0825-@0:001 0.701 @0.134
. KL-CutMix 0.799 @ 0.657 O773-@0-064 0795@0:020 0893-@0000 0-790-@0-065
é KL-Subset 0.847@0.755 0.722@0.610 0724 @0.595 0.721 @0.188 0.672 @ 0.368
§ OoDCon-ImageWise 0.818@0.674 0.738@0.266 0.713 @0.253 8-769-@0-04+ 0.715@ 0.241
OoDCon-CutMix 0830 @0.716 0.692 @0.129 0-736-@0-061+ 0836-@0006 0.671 @0.238
OoDCon-Subset 0829 @0.758 0.744 @0.613 0.732@0.582 0.715@0.174 0.711 @ 0.437
@ OoDCon-0oDMix 0.829 @0.771 0.765 @ 0.670 0.770 @ 0.663 0.668 @ 0.252 0.737 @ 0.511
8 OoDCon-LN-OoDMix 0.824@0.767 0.759 @0.644 0.776 @ 0.662 0.682 @ 0.292 0.740 @ 0.524

Table 5.4: Misclassification Detection performance in terms of MaxAyp @ p(a, c) for a range
of test domains. Entries are struck out if their p(a, c¢) is too low, as this threshold value leads
to the assignment of class to too few pixels.
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This chapter presents a method that learns distributional uncertainty estimation through
training on OoD driving data, which contains in-distribution, near-distribution and OoD
instances all within a single image. This is in contrast to Chapter|5| where a large-scale image
dataset was used, where the entirety of every image was treated as OoD. This new type of
OoD data is challenging to train with, however the previous chapter suggests that a smaller
distributional shift leads to more generality and robustness than using a OoD dataset with
a large distributional shift.

This method was first presented in:

¢ D. Williams, D. De Martini, M. Gadd, and P. Newman, “Mitigating Distributional Shift
in Semantic Segmentation via Uncertainty Estimation from Unlabelled Data”, IEEE

Transactions on Robotics (T-RO), 2024.

6.1 Motivation

The method in this chapter is influenced by insights from Chapter [5|, where it was shown
that the nature of the data used to learn distributional uncertainty estimation, i.e. the target
domain dataset, is important.

In the previous chapter, the target domain dataset was a large-scale image recognition
dataset, where many of the images were very different to the source domain, i.e. the la-
belled training dataset. We found in the literature, and through experiment, that the more
distinct the source and target domains are, the lower the quality of learned distributional un-
certainty estimation as a result of a less robust separation of in-distribution and OoD data.
These findings motivated us to look at what alternatives could be used as the target domain

dataset.

6.1.1 Using Unlabelled Out-of-Distribution Driving Data

The literature in Section [3.5.6|and empirical evidence discussed in Chapter [5|advocate the
use of a training dataset containing so-called ‘near-distribution’ instances, i.e. instances that

are OoD, but similar to the in-distribution data in terms of semantics or appearance. This
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type of training dataset allows for more general and robust distributional uncertainty esti-
mation.

For our setting, a type of data that contains ‘near-distribution’ instances alongside in-
distribution and OoD is distributionally-shifted driving data. For images collected by road
vehicles, the majority of pixels often remain in-distribution, e.g. roads, vegetation, sky can
often look similar in different lighting and geographic locations. However, due to the set-
ting’s outdoor and open nature, the images also contain many instances that are visually
or semantically different, which are adjacent to the in-distribution pixels. Distributionally-
shifted driving images from a given target domain therefore perhaps provide the opportu-
nity to learn a representation that is more suited to general distributional uncertainty esti-
mation on a number of different target domains.

Another benefit of this type of training on images from a given target domain, is that the
uncertainty estimation performance is likely to be particularly good in that target domain
due to the reduction in gap between training and testing. Therefore, if one type of distribu-
tional shift from the robot’s ODD is likelier to occur, e.g. the same geographic location, but
in bad weather, or the same conditions but slightly outside the geographic location of the
ODD, the model can be made especially good at detecting error due to this shift.

Distributionally-shifted driving data sits in between the two types of data seen in aleatoric
uncertainty estimation and learned OoD detection. For aleatoric uncertainty estimation
methods, discussed in Section the model would be trained to detect error on in-
distribution driving data, i.e. there is no distributional shift or target domain considered.
By contrast, as discussed in Section [3.5.6/and practised in Chapter |5} for learned OoD detec-
tion, distributionally shifted data is considered, however it is no longer driving data. The
argument made in this section is that by drawing on aspects from both methods, and train-
ing using distributionally-shifted driving data, uncertainty estimation can be improved both

on the specific target domain chosen, as well as more generally for any given target domain.

Challenges

Using data with in-distribution, near-distribution and OoD instances all within the same im-

age is desirable, however it also introduces a significant challenge. For the learned methods

104



discussed, pixel-wise ground-truth for the training images is required. For aleatoric un-
certainty estimation, ground-truth is used to measure error, and thus determine the image
regions for which high uncertainty is appropriate. For learned OoD detection, pixel-wise
ground truth is needed to determine which pixels are in-distribution and which are OoD.
This requirement for pixel-wise ground-truth would severely limit the diversity of the
dataset, which, in turn, limits the quality of distributional uncertainty estimation, as dis-
cussed in Section [5.4} For this reason, this chapter presents a method to train a model to
learn uncertainty estimation using unlabelled images, in contrast to methods discussed in
Section [3.4.5 and Section [3.5.6] As a result, this type of method is tractable in robotics set-
tings, because all that is required for the collection of a large training dataset is: the avail-

ability of a robot, and access to domains which are distinct from the source domain.

6.1.2 Introduction to v-SSL

The first thing to consider is how to generate a signal, without the use of labels, that can be
used train the model such that image pixels that lead to segmentation error are separable
from pixels that are correctly segmented.

One productive vein of research in computer vision uses self-supervised learning to learn
a representation without labels, as discussed previously in Section [3.5.3/and Chapter 5| In
self-supervised learning methods, models are often trained with the objective of learning a
semantic representation, without these semantic classes being defined by annotation, and
instead by using data augmentation. This has been shown to work extremely well in a
large-scale setting, where the neural networks and datasets are both very large.

One method for evaluating the ‘quality’ of the learned representation is to perform linear
probing experiments. These experiments train a linear layer on top of a learned representa-
tion in a supervised manner, and show very high performance on large-scale image classifi-
cation such as ImageNet [31], [32], [106], [108]. This shows that this type of self-supervised
training is very effective at training large neural networks to cluster image data, such that
the clusters are linearly separable and semantically meaningful.

For this chapter, the significance of this is that these works have showed that using data

augmentation is a very effective way of circumventing the requirement for ground-truth
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annotation. In supervised learning, labels are used to measure classification error, which
the model can then be trained to minimise; however in self-supervised learning, the data
augmentation is instead approximately measuring classification error. Instead of measuring
and minimising error, this raises the possibility of using data augmentation to measure and

detect error.

6.1.3 How to tailor self-supervised methods for uncertainty estimation?

In this chapter, we consider the self-supervised task of crop-and-resize data augmentation.
The method works by having one image, which you crop, resize to its previous size, then ap-
ply a colour-space transform. This is done such that the image-wise semantic content is pre-
served between the two images (or views), while also looking significantly different. Then,
by training a model to learn a feature space which is invariant to this form of data augmen-
tation, the assumption is that the model produces embeddings which describes semantics.
A model’s inconsistency in embedding is measured, and the SSL objective minimises this
inconsistency.

A method for learning uncertainty estimation can therefore be devised by (1) measur-
ing a model’s inconsistency with respect to data augmentation, (2) designing a mechanism
whereby the model can express uncertainty, and (3) defining an objective that trains the
model to output high uncertainty for pixels where the model is inconsistent and low uncer-
tainty when the model is consistent.

The aims of (1) and (2) are common between learning uncertainty estimation and SSL,
however the implementation choices between the method in this chapter and SSL literature
are different.

For (1), instead of measuring inconsistency in the model embeddings, i.e. considering
the distance between high-dimensional features, our method measures the inconsistency
between segmentations. This is because segmentation inconsistency is a more useful rep-
resentation of segmentation error than the more abstract embedding inconsistency. As will
be described in Section 6.5, segmentation inconsistency is represented by a binary mask M¢
relating to whether the most probable classes are equal or not, in a way that is not possible

with embedding consistency without introducing a threshold.
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For (2), we have chosen to design a model that outputs uncertainty as distance in feature
space, however it is the distance from a given pixel-wise feature to its nearest ‘prototype’.
The prototypes are calculated from the labelled source images, and are the mean unit feature
vectors for each of the semantic classes. In this way, the distance between a pixel-wise fea-
ture vector and its nearest prototype describes the difference between this image region and
the labelled training data for its most similar class. If this distance is large, then this image
region is unlike anything seen in the labelled training images. This is similar to the idea of
using a per-class Gaussian Mixture Model (GMM) seen in DUMs in Section [3.5.2) where the
covariance matrix is fixed to the identity matrix.

How this measure of uncertainty is trained to be predictive of segmentation inconsis-

tency for (3) is discussed in Section [6.5|

6.2 Preliminaries

The ultimate aim of this method is to train a neural network that can: (1) segment an image
x € R¥>*>W into a set of K semantic classes, givingy € {n € Z | 1 < n < K}M*W where
each pixel is assigned to a member of the set of known classes is given by K = {ky,...kx},
and (2) perform uncertainty estimation and yield an uncertainty mask, M € {0, 1}7*W
which assigns a given pixel to 1 for certain, and 0 for uncertain. As described in Chapter 4
the model will be evaluated in terms of its misclassification detection performance, where,

for the ideal model at a pixel location i, M] = 1 wheny; =y, and M] = 0 when y; # y;.

6.2.1 Segmentation via Prototypes

An image is embedded using both an encoder E : R¥>*#*W _ RF*hxw and a projection
network g, : RF*hxw — RFxhxw where F is the feature length, and h and w are the down-
sampled spatial dimensions.

From these embeddings, prototypes s € RI"™*X are calculated which represent the class-

wise mean feature vector. These are calculated using a batch of N images Xg € RYV*3xWxH

4

with corresponding one-hot labels Y§ € RV*"*@xK which have been downsampled to the

same spatial dimensions as the embeddings. The batch of images Xgs are embedded as above
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to given a batch of embeddings, Zs € RY*"*wxF' The prototypes can then be calculated for
each class as:
L mY

=== (6.1)
125 Y]l2
These prototypes can then be used to segment an image by calculating the similarity
between each pixel feature of a given target image and the prototypes. The low-resolution

logits 1 of the i-th pixel embedding z; € R"*! is given by:

1, =z, g (6.2)

As both z; and each of 7g are of unit-length, the logits are the cosine similarities between a
pixel feature and each of the class prototypes.

In order to produce full-resolution segmentation maps, the downsampled logits 1 €
R"w>*K are bilinearly upsampled to 1 € R¥*W>*X_ Finally, per-pixel categorical distribu-

HxWxE and segmentationmapy € {n € Z | 1 <n < K}V are calculated

tions, p € [0, 1]
as:

p = softmax, (1), y = argmax(1) (6.3)

6.2.2 Uncertainty Estimation via a Feature-Space Threshold

Distributional uncertainty can be thought of as the uncertainty of a pixel not being assigned
correctly to one of the known classes, i.e. p(y ¢ K|z). Therefore we need a way to relate
distance (or in this case similarity) in feature space, i.e. the logit values, to p(y ¢ K|x). This

method represents uncertainty by concatenating a threshold parameter + to the logits:
p(y|z) = softmax,(l; © ) € RE* (6.4)

Where p(y|z) = [p(y = k1), ..., p(y = kk|z),p(y ¢ K|z)] = softmax,([L;1, ... ,Lix,7])

If we consider the maximum logit prior to concatenation, max(l;), this is the similarity
between the pixel feature and its nearest prototype, which is a measure of the model’s confi-
dence. However, after concatenation, if - exceeds this estimate of the model confidence then

argmax(l; @ v) = K+1. This means that instead of being assigned to a known class k € K,
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the pixel is assigned to ‘unknown’.

Therefore, « is operating as a threshold on the model’s confidence, and represents a re-
gion around each prototype, within which the model is confident, and outside of which the
model is uncertain. Formally, we can calculate the aforementioned uncertainty mask in this
manner as:

M, =1 — l1[argmax(l; ® v) = K+1] (6.5)

Where 1 is the indicator function.

6.3 Crop & Resize Data Augmentation

In lieu of supervision, data augmentation is used to generate an approximation of where
errors likely occur. Typically, data augmentation takes the form of applying both a crop-
and-resize transform, along with a colour-space transform. In the context of learning a rep-
resentation for image classification, it is important that, while different in appearance, both
crops primarily describe one semantic class. Therefore, both crops should be embedded to
the same location in a semantic feature space.

The difference in our context is that our task requires evaluating a model’s feature space
in a pixel-wise manner. This, therefore, requires us to compare the semantics between the
two crops in a pixel-wise manner. We devise the following method, described in Section|6.3.1|

and Figure 6.1

6.3.1 Method

Firstly, an unlabelled image x is randomly cropped with the corresponding transform 7.9,
producing a global crop. This is then separately transformed by both 77 or T;* giving two
crops, x and X'. T;* and 7," are sampled such that one is always the identity transform,
while the other is a crop-and-resize transform. Different colour-space transforms, C; and Cs,
are then applied to each of these two crops. Intuitively, the result of these operations is to
give two crops, where one is a colour-transformed crop of the other, which has been resized
to match its spatial dimensions.

After this, two functions, f and g, segment each of the generated crops. Pixel-wise
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Figure 6.1: A depiction of the crop-and-resize scheme used. Firstly, a global crop x is ob-
tained with spatial dimensions (H, W), which are image spatial dimensions used for the
entirety of this chapter. Subsequently, a local crop X’ is obtained from within the global
crop with initial spatial dimensions (H’, W’), before being bilinearly interpolated to (H, W).
In this way, we have two images of the same spatial dimensions representing two distinct
views of the instances contained within the region of X/, where x contains significantly more

context than . x = T;% o T (x) and X' = T,f o T9(x) if T and T,F are sampled as the
identity and local crop-and-resize respectively.

aligned segmentations are then generated by applying the local crop-and-resize operation

that was not applied before, i.e.:

I'=TfofolioT o TE ()
(6.6)

1= T ogoCyo T o TH(x)

Logits 1 and I’ are pixel-wise aligned and, from this, the training objective is designed.

6.4 Training Architecture

Using the above data augmentation scheme, training entails comparing the segmentations of
two crops of the same image. In this scheme, we have described two segmentation functions
f and g that define two branches, each of which segments one of the crops. These functions
could represent the neural networks with the same architecture, however in this method
they do not. In this method, the branches are defined by the following, and described in
Figure|6.2| and Figure[6.3}

£() = £, 0 () (67)
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Figure 6.2: Illustration of the architectures of the branches when training on target domain
images, and the context in which losses L¢ and L" are calculated. Networks are coloured in
aquamarine when the gradients w.r.t. the depicted losses for that forward pass are non-zero,
and in grey when no gradients are calculated.
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Figure 6.3: Illustration of the architectures of the branches when training on source domain
images, and the context in which losses LP and L* are calculated. Gradient with respect to
the depicted losses are calculated for all networks, hence their colouring in aquamarine.

g(*) =grog,oE() (6.8)

Where E is an encoder, £, is a segmentation head, g, is a projection network and g, rep-
resents prototype segmentation. The function g uses prototype segmentation in a way that
has been described in Section|6.2.1} The reason as to why f does not share the architecture
of g will be described in Section with reference to the training objective.

111



6.5 Training Objective

Using the above mechanism, the method should train a model so that it can express uncer-
tainty accurately with M”, such that the model is either accurate and certain, or the model
is inaccurate and uncertain.

The first step in designing the training method is that we assume segmentation consis-
tency between two images that have been generated via crop-and-resize data augmentation,
is a good approximation of segmentation accuracy. In the context of this work: if we have
two pixels that correspond to the same location in the original image, and they have both
been segmented as the same class by two differently parameterised functions, then it is
highly likely that the class assignment is correct, otherwise it is probably not.

For two segmentations, {1,1'} € R7*WxE the consistency between these segmentations

can be represented by consistency mask M¢ € {0, 1}7>W:

1 argmax(l}) = argmax(l;)
M = keK kEK (6.9)

0 otherwise

This method then relates the uncertainty maps M” and consistency maps M® with a

procedure consisting of two steps:

1. ~is solved for such that the number of certain pixels in M” is equal to the number of
consistent pixels in M¢. In this way, the rate of certainty is calibrated by the rate of

consistency, which is taken as an approximation of task difficulty and accuracy.

2. In a model training step, the consistency is maximised for the pixels that are certain
according to M". As a result of this step, both M and M” become better estimators of

accuracy.

If every training iteration serves to improve M® and M" as approximations of ground-
truth accuracy, then a positive feedback loop is established whereby high-quality uncer-
tainty estimation is learned. In order to fully achieve this feedback loop, a number of addi-

tional objectives are required, which are discussed in Section [6.5.4]
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6.5.1 Calculating v

The threshold parameter v is calculated so that the number of certain pixels in M” is equal to
the number of consistent pixels in M¢, see Algorithm [I|for more detail. The approximation
being made in this work is that pixel-wise segmentation consistency is an estimate of pixel-
wise segmentation accuracy. However, the calculation of +y relies on a looser version of this
approximation, that the mean consistency of a batch is an estimate of the mean accuracy of
a batch.

It is important that the value for v is appropriate given how it is used in the second step.
If the training objective maximises the consistency between too many pixels, then without
ground-truth to keep the segmentation network grounded, it will start to erroneously as-
sign a consistent class to pixels at the same location in the two crops, when they should be
uncertain. This is a problem, because an erroneous increase in mean consistency, leads to an
erroneous increase in mean certainty via v, and thus the proportion of pixels that are con-
sistent, certain and inaccurate increases. Once this begins to happen, it is difficult to undo
as this is a path to reducing the loss, even though it is a incorrect solution to the problem
from our perspective. This type of collapse is a common phenomenon in SSL. Therefore, it
is key that M” is certain about as few pixels that are consistent and inaccurate as possible,
and empirically, we find that this method of solving for v works effectively.

This is perhaps because, initially, the consistency between the segmentations is very low.
This therefore sets up a training dynamic where the certainty is also initially low, and con-
sistency is only maximised for the very most confident pixels. Therefore, as the objective
increases the consistency over time, it is less likely that pixels are consistent and inaccurate,

as the objective was initially very selective and conservative.

6.5.2 LearningE

The training of the encoder E should result in segmentations that are either certain and ac-
curate or uncertain and inaccurate. The objective seeks to achieve this by drawing on ideas
in learned loss attenuation (discussed in Section [3.4.1), and to provide two paths for the
network to decrease the loss. Either it can produce a consistent (and therefore high-quality)

segmentation or it can express uncertainty.
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Algorithm 1 Algorithm to calculate 7. Here, Max Sy contains the largest classification scores
for each pixel, i.e. largest similarity with prototypes. As M° is a binary mask of consistency,
and p, is its average, (1 — p.) is the proportion of inconsistent pixels in the batch. Line 9 then
chooses v so that certain pixels have the same proportion as consistent.

1: Inputs:

2: Consistency mask: M€
3: Classification scores: Sp € RNV*XEKxHxW
4: function CALCULATE_GAMMA(MS, S7)

c RNXHXW

5: MaxStr = flatten (max (Sp, dim="K"))

6: MaxSt = sort (MaxSr, ascending=True)

7: p. = mean (M,) > % consistent pixels
8: R=(1—p)*NxHxW > Num. uncertain pixels
9: v = MaxSr[int (R) ]
10: return v

11: end function

The first step in calculating the loss is to compute the soft consistency between the two
segmentations. For two crops, X and X/, generated with the data augmentation scheme dis-
cussed in Section|6.3.1 with pixels at locations i given by Z = X; and &’ = X/, the categorical
distributions for the ith pixel are given by p(y|z) and p(y|z’). Then, the soft consistency can
be calculated with the cross-entropy function as H[p(y|z), p(y|z')].

The next step is to mask out regions of the loss, which the model estimates are likely to
be inconsistent, i.e. regions that are uncertain according to M. The final loss is therefore

given by:
e 20 MY Hp(ylT). p(ylze)]
B SOINEW N
J

J

(6.10)

Where the soft consistency is minimised where the model is certainty (M, = 1), and the loss
is attenuated where it is uncertain (M, = 0).

Another important aspect of this loss, is that the p(y|z’.) is derived from £, which uses a
segmentation head, rather than prototype segmentation. As a result of this, the entropy of
p(y|Z/) is much lower than p(y|Zr) due to its training with supervised cross-entropy L* (dis-
cussed in Section|6.5.3), therefore this training objective also reduces the entropy of the latter.
As p(y|zr) is computed by calculating the cosine similarity between the source prototypes
and the target features, a decrease in its entropy relates to the target features being pulled
closer to its nearest neighbour prototype. This increases the separation between certain and

uncertain pixels because the entropy is only minimised for certain pixels, where M = 1.
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6.5.3 Learning the Task

In addition to training the model to perform uncertainty estimation, we also need to train
the model to perform the task at hand, i.e. the accurate semantic segmentation of the source
domain. For this, the supervised cross-entropy loss L* is used, which for a pixel x5 = xg; is
given by:

Ly == y5p log(p(y = klzs)) (6.11)

keK
Where y¢; € {0,1}" is a one-hot ground-truth label for a pixel location . This segmentation
is produced by the segmentation head, therefore this objective updates both the encoder E

and the segmentation head £, as illustrated in Figure|6.3]

6.5.4 Preventing Feature Collapse

If we were to optimise the model only using L€, then it is likely that feature collapse will
occur, as the simplest solution that minimises L° is one in which the model outputs the
same segmentation for any image, and across both branches. This happens in SSL when a
model loses sensitivity to the input, and produces a model output that satisfies the consis-
tency objective, while being independent of the input. A simple example of this for Siamese
networks is when the model produces the same feature vector for all possible images. In
our case, the model could produce the same segmentation for all target images, while seg-
menting the source domain accurately. This would result in consistent (and thus ultimately
confident) segmentations that are entirely inaccurate.

This problem is often discussed in SSL literature, such as in [143], [144], and can be solved

with both training objectives and architectural changes. This method leverages both.

Additional Objectives

When feature collapse occurs with prototype segmentation, all features are embedded on
top of a single or a few prototypes. Therefore, when it occurs there is a characteristic con-
centration of features in feature space. L" is used to prevent this by softly constraining the
model to embed features uniformly on the unit hypersphere, proposed in [136].

For a batch of projected and downsampled features Zr € RNXFxhuxwe the objective
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maximises the pairwise distance between features using an RBF kernel:

1 5 5 2
LY — —t||Z1,:—ZT,;l5 6.12
Nhywy ; ‘ ( :

Where (h,,w,,) are the downsampled spatial dimensions of the features used in this loss.
After projection, the features are average pooled to a quarter of the resolution of the pro-
jected features, (hy,w,) = (2,%). This is done purely to reduce the memory usage incurred
in calculating pairwise distances between all features in a batch of size V. The RBF kernel
has a maximum value of 1 when ZT,Z’ = ZTJ-, and thus any non-zero distance is minimised
by the loss L".

L* is only calculated on target images, and so to prevent additional failure modes, uni-
formity also needs to be encouraged on the source images. An observed failure mode occurs
where the prototypes are concentrated and the majority of the target features collapse onto
the prototypes (and are thus certain and minimise L¢). Meanwhile, the distance between the
certain and the smaller proportion of uncertain features are maximised, minimising L".

Uniformity for the source domain is implemented by maximising the distance between
the source prototypes, in the form found in [145]. To do this, the cosine similarity is com-
puted between each of the prototypes as Tdmg € REXF x RIXE = REXE Tf I is the identity
matrix, then for (7 ms — 2I), the largest possible value for the diagonal self-similarity terms
is —1. The maximum non-self pair-wise similarity can thus be calculated for each prototype,

for example:

0.94 0.31 0.23 2 00 —1.06 0.31 0.23 0.31
max 0.31 0.91 0.56 - 0 2 0 = max 0.31 —-1.09 0.56 = 10.56
0.23 0.56 0.99 0 0 2 0.23 0.56 —1.01 0.56

These maximum pair-wise similarity are minimised, so that LP is maximising the dis-
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tance between nearest-neighbour prototypes. Formally, the loss is given by:

K
1
P = K Z I§1€%<X[7T:5vrﬂ'5 - QILJ (613)

i=1
Asymmetric Branches

A second way to prevent feature collapse is to parameterise the branches f and g differently,
e.g. [106], or define each with a different architecture, e.g. [107]. In this work, we do the
latter, as previously described in Section [6.4]

The branches share an encoder E, however each map the features to a segmentation map
differently. Therefore, for both models to produce an identical output and thereby maximise
consistency, the following needs to be true: f,, = g, o g,. For this architecture, collapse is
not observed for the following possible reasons: (1) f,, and the prototypes used in g, are
not updated by L€, therefore are not encouraged to collapse, (2) g, is updated with L" in

addition to L°.

6.6 Training Procedure

6.6.1 Model Pretraining

Each of the networks are pretrained by L* and L*" before training with L. This means that
before training proper starts, the segmentation network f = £, o E is trained to segment the
source domain, and have some level of performance the in target domain. So long as the
network has not overfit, this is a good initialisation for segmenting the target domain, and
helps to speed up convergence.

In addition to this the projection network has only been updated with L", and so has
very successfully maximised the uniformity, and thus ultimately the inconsistency between
branches f and g. This initially makes it more difficult for the networks to maximise con-
sistency, and thus makes it less likely that corresponding pixels at a given location are con-
sistent and inaccurate. This helps to maintain the assumption that consistency is a good
approximation of ground truth accuracy, and benefits the positive feedback loop, the impor-

tance of which we stressed in Section [6.5.1]
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6.6.2 Domain-based Curriculae

Each target domain provides a set of unlabelled training images, and so we end up with a
trained model for each target domain. Testing primarily occurs in the labelled test dataset
from that same target domain.

However, we also perform experiments where a model is trained on multiple unlabelled
target datasets. These experiments are based on the assumption (and ultimately the em-
pirical observation) that it is more difficult to learn to perform uncertainty estimation if the
target domain is significantly shifted from the source domain. Therefore, our solution to this
is to first train a model on a target domain that is more similar to the source domain, but is
still similar to the target domain of interest. By splitting training into two steps from source
— to intermediate target — final target, we reduce the effective size of the distributional
shift for each training step.

This is related to the motivations in curriculum learning, where it is shown that increas-
ing the difficulty throughout training results in a more performant model. In this work, the
difficulty of any given training example is defined in a very coarse manner, i.e. just by the ge-
ographic domain it comes from. Nonetheless, it would be possible to use more fine-grained
and possibly image-wise metrics to describe the difficulty of training examples.

As previously discussed, we are interested in training a model that is performant in the
robot’s ODD, and can detect when it has left it. This ODD is defined by the labelled source
domain dataset, which has a set of operating conditions, e.g. sunny/overcast, day/night,
rainy/dry, summer/winter. Therefore what is out of this ODD and thus OoD is defined as
the negative of any one of these choices. We can therefore imagine that a clear definition
of a ODD makes it fairly clear how to design a curriculum. The easiest examples are when
most of the operating conditions are the same, and the most difficult are when they are all
different.

For this reason, we argue that designing and training with a curriculum is simple, and
just requires access to a data collection platform (e.g. the deployment robot) to collect data

(which requires no annotation) when these conditions occur.
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6.7 Network Architecture

The segmentation network used in this method has the DeepLabV3+ [140] architecture,
which comprises of a ResNet [35] encoder and a ASPP decoder. We used as ResNet-18
encoder as it is the smallest commonly used ResNet, and we are ultimately interested in de-
ploying such a segmentation network on a mobile robot, therefore low latency and memory
usage are very important. This also has the additional benefit of reducing the memory usage
during our experimentation, allowing for more experiments to be run in parallel, and thus
speeding up development.

In the implementation use there is also a segmentation head that maps from the output
of the ASPP module to the segmentation maps. In this method the features used Z come
from the output of the ASPP, i.e. those before the final layer, such that the encoder actually

comprises both the ResNet and the ASPP layer:
E = ASPP o ResNet : R¥/TXW — RIFxw

Where the spatial dimensions of the input are (H,W) = (256,256), and the downsam-
pled dimensions are (h,w) = (£,%) = (64,64), and the feature dimension F' = 256.The
segmentation head is represented by £, : Rf"*"*w — RExhxw The features 2 are projected
by projection network g, yielding z of the same dimensionality as 2, and so the projection
network is given by g, : RF*"xw — RFxh>w Tt jg a two-layer MLP which is applied to each
pixel feature independently, such that before projected, a batch of N features is reshaped

as follows: RN*Fxhxw _ RNhuxE and the MLP operates on each of the individual Nhw

features.

6.8 Baselines

It is important to consider the performance of related methods, to see how the results com-
pare and reason about where the improved performance comes from.

There are two high-level methods for how to detect segmentation error for distribution-

!DeepLabV3+ implementation found here: https://github.com/qubvel/segmentation_models.
pytorch
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ally shifted images: epistemic uncertainty estimation methods (shortened to epistemic meth-
ods) and representation learning based methods (i.e. representation methods). The former
investigates the distribution of model parameters in order to quantify when the learned pa-
rameters are inadequate for the task at hand as discussed in Section[3.3.2] The latter hypothe-
size that a model’s learned representation ought to have learned to represent the differences
between the source images and any other image, therefore this distance in feature space
likely correlates with the likelihood of error and thus is a useful measure of uncertainty,

discussed in Section 3.5

Epistemic Baselines

The epistemic methods considered in this work are Monte Carlo Dropout (referred to as MCD
in the results) and Deep Ensembles (referred to as Ens). We use two measures of uncertainty:
the predictive entropy (PE) and the mutual information (MI). The architecture used for the
Monte Carlo Dropout baseline is based on Bayesian DeepLab [146], which is then adapted
for the ResNet-18 used in this work. We test over a range of possible dropout probabilities
and number of samples, and conclude that 0.2 and 8 work effectively. Additionally, for the
Deep Ensemble baseline, we consider ensembles of size 5 and 10.

As has been discussed, these baselines are not feasible to run in real-time on a mobile
robot, however we use the method in [69] to distil the distribution of segmentations from a
MCD network into a deterministic network, that can express uncertainty in a single forward

pass (known as MCD-DSL in the results).

Representation Baselines

The representation baselines considered are OoD detection methods and DUMs, discussed
in Section [3.5.1]and Section [3.5.2| respectively.

The OoD detection methods follow the following formula: train a network on the source
domain data, then leverage the learned representation by using an inference method that
calculates an OoD score that describes the difference between a given image and the source
dataset. Therefore, each of these methods uses the same segmentation network trained

in a supervised manner on the source domain. [91] simply calculates p,,.x (referred to as
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Softmax). ODIN in [92] calculates puax but with a tuned softmax temperature and ad-
versarially attacked images (referred to as Softmax,). The method in [93] computes the
Mahalanobis distance between a given image features and a multi-dimensional Gaussian
fitted to the mean source domain features (referred to as FeatDist), which can also lever-
age adversarially attacked images (referred to as FeatDist,). Finally, ViM proposed in [94]
computes a score based on both the extracted features and the logits.

For a direct comparison, the methods that use features use the same feature space is used
as in our proposed method, described in Section|6.7] For the methods using adversarially
attacked images, a range of ¢ are tried, and results are presented for the best performing
value.

As for the DUMs, we use the simple but effective method proposed in [103], which cal-
culates a post-hoc GMM with a mixture component for each class. The implementation for

the spectral normalised network is based on [147

Our Proposed Models

The models trained with the method proposed in this chapter are referred to as 7-SSL and
7-SSL;;. The latter is trained according to the curriculum suggested in Section|6.6.2, and the

intermediate domain used is SAX London (hence the subscript iL referring to init London).

6.9 Evaluating uncertainty estimation on narrow target do-
mains

With results found in Section [6.9.1} the first set of experiments train our proposed models
with the labelled training dataset from Cityscapes and unlabelled training dataset from one
of the SAX domains. These models are then evaluated with the test dataset from the same
SAX domain as the unlabelled training dataset. The aim of this is to evaluate how the pro-
posed method is able to detect error due to a specific type of distributional shift, by using
training data that contains instances of this specific type of shift.

The experiments are repeated with KITTI and BDD as the distributionally shifted tar-

ZImplementation found at https://github.com/jhjacobsen/invertible-resnet
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get domains, with results found in Section [6.9.3] Additionally, experiments with the SAX
domains as the target domains are also performed with BDD providing the labelled source

training dataset, with results in Section [6.9.4]

6.9.1 Source: Cityscapes, Target: SAX Test Datasets
Target: SAX London

Looking at Figure [6.4] the 7-SSL model performs best in each plot for SAX London. Its
precision is higher for all values of recall, which relate to increases of 19 % and 8 % over the
next best baseline for AUROC and AUPR respectively (more detail found in Table[6.3 and
Table . 7-SSL also returns the highest MaxAymp and MaxF., scores, with corresponding
values of p(a, ¢) that are higher than all but MCD, ,.

MCDy ., generally is the best baseline, returning the highest AUROC, AUPR, MaxAyp and
MaxF./, scores of the baselines. For this baseline, MI instead of PE was on the whole more
performant. It is worth noting that the MCD, , models also have higher segmentation ac-
curacies, presumably owing to the dropout layers providing effective regularisation during
training, leading to better generalisation than a standard segmentation network.

The quality of uncertainty estimation for the epistemic and representation methods was
fairly similar according to AUROC and AUPR. When looking at MaxAyp and MaxF.,
scores, these were also quite similar between the two method types, however the values
of p(a, ¢) at which the scores occur for representation methods is lower on average.

The v-SSL;;, models don’t exist for this dataset configuration as for this SAX London as

the target domain, they are the same models as y-SSL.

Target: SAX New Forest

In terms of AUROC and AUPR, the 7-SSL and v-SSL;;, models produce similar results,
with the 7-SSL;; models better on the margins (AUPR of 0.942 vs. 0.921). Similarly for the
MaxAynp and MaxF, scores the y-SSLi;, models are slightly better with increases of 2.4 %
and 3.5 % respectively. Underlying these metrics, there is however a large difference as the
values of p(a,c) at which the v-SSL;;, scores are reported are far larger, with increases of

25.9% and 30.7% over 7-SSL. For this reason, the y-SSL;; are much more useful, which
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is not something that AUROC or AUPR capture, thereby demonstrating the importance of
presenting the results as we do. Part of the reason for this is that the curriculum learning
has improved the segmentation accuracy for this domain.

The MCD, ., models have lower AUROC and AUPR than 7-SSL models, and slightly
lower MaxAyp and MaxF., scores. However, the latter is tarnished by the fact that the
scores for y-SSL are for values of p(a, ¢) that are 22 % lower. In order to pick between MCD ,
and 7-SSL, it is therefore important to weigh up ‘usefulness’ versus ‘safety’.

The same cannot be said for the y-SSL;;, model, which has significantly better MaxAp
and MaxF, scores with increases of 9.0 % and 7.3 % respectively for minor changes in p(a, c)
of —2.7% and 1.7 % compared with MCD-MI, .

No different to SAX London, the MCD, , models perform the best out of the baselines.
Again the epistemic methods were better than the representation methods, with higher

AUROC and AUPR, and similar values of MaxAyp and MaxFi, but at higher values of

p(a,c).

Target: SAX Scotland

The key finding in this domain is that the increase in performance from 7-SSL to 7-SSL;,
is at its greatest. The y-SSL;;, far exceeds the quality of uncertainty estimation of the other
models, as easily seen in Figure For the MaxA\p@p(a,c) and MaxF, ;@p(a, c) metrics,
the increases over the next best baseline is as follows: 9.1 % @ 65.8 %, 20.2 % @ 72.1 %. Similar
to the New Forest, but much more pronounced, is the large increase in the quality of both
segmentation accuracy and the uncertainty estimation as a result of the curriculum learning.

As for y-SSL, its results are similar to the best baseline MCD, ,. It is clear that the ex-
tremely large distributional shift causes a significant challenge to the semi-supervised task
— perhaps demonstrated by the difference between v-SSL and 7-SSLjy.

As a result of the distributional shift, the epistemic methods are better than the repre-
sentation methods by the largest margin out of the domains. Quantitatively, this is repre-
sented by the increase in AUPR of 34.8%. It is clear that a representation solely learned
on Cityscapes is not appropriate to perform OoD detection in a domain as distributionally

shifted as SAX Scotland.
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6.9.2 Effect of distributional shift

For the SAX domains, the order of increasing distributional shift to Cityscapes is: London,
New Forest, Scotland. Qualitatively, this was thought to be true, which is backed up quan-
titatively by the decreasing segmentation quality of a segmentation network trained on
Cityscapes only, with segmentation accuracies being: 0.571, 0.538, 0.394 for London, New
Forest and Scotland respectively. We investigate the changes in the quality of uncertainty
estimation for each model as a function of distributional shift in Table The AUROC and
AUPR are presented as they are independent of the segmentation accuracy of each method,
which decreases as the distributional shift increases. Thus, it is expected that these metrics
should not change as distributional shift increases.

We are particularly interested in how the quality of uncertainty estimation degrades for
the type of method: epistemic and representation, and comparing that to our proposed
methods.

Table 6.1: AUROC and AUPR Percentage Change at Increasing Distributional Shift, % AROC
and %APR Respectively

LDN — NF NF — SCOT

Method ~ %AROC %APR  %AROC %APR
Ens-PE. 23 27 25 96
9 Ens-MI. 11.1 1.2 -13.0 227
&  Ens-PE,, 42 2.0 32 -124
@ Ens-MI,, 13.7 12.8 -16.3 -26.3
& MCD-PE, , 1.8 0.9 0.6 -14.2
MCD-MT, 2.6 1.3 6.4 -16.4
MCD-DST. 6.5 4.2 8.9 26.4
— Mean — 6.0 5.0 -7.3 -18.3
£ Softmax 5.1 112 18 16.8
£ Softmax, 5.1 112 -1.9 -17.0
£ FeatDist 23 6.1 0.3 221
# FeatDist,  -04 3.1 9.0  -348
5. ViM 10.3 0.5 8.5 292
e DUM 16.9 1.4 9.7 -43.6
~—Mean — 24 5.4 5.1 273
z ~-SSL 17 3.0 11.8 212
®  7-SSLiy, 1.7 0.7 2.4 5.8

A negative value represents a decrease in misclassification detection performance as distributional
shift increases.
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Epistemic Methods

Considering the shift from London to New Forest, the AUROC and AUPR increase by 6.0 %
and 5.0 % respectively. As epistemic methods are designed specifically to detect epistemic
uncertainty, this could be a result of an increase in pixels that are wrong as a result of epis-
temic uncertainty, e.g. by not having trained on the right training dataset. This, however,
does not happen when the distributional shift increases further, in the shift from New Forest
to Scotland. For this shift, the AUROC and AUPR decrease for every method, and for some
very significantly, leading average decreases of 7.3 % and 18.3 % respectively.

The conclusion from this is that, as the proportion of pixels that are incorrect as a result
of distributional shift increases, there might be some immediate benefits to uncertainty es-
timation quality. However, ultimately, distributional shift can increase to a magnitude that

can greatly reduce the quality of the detection of these errors, which is a concern.

Representation Methods

On average, methods that rely on leveraging the representation learned on a labelled dataset
tend to produce uncertainty estimates that are less robust to distributional shift. This is
demonstrated quantitatively by the decrease in AUPR of 5.4 % and 27.3 % for the two shifts
considered. Considering AUROC, the change was less clear, however the majority of rep-
resentation methods decreased in AUROC across both shifts. MaxAyp, MaxF.,, and the
p(a, ¢) at which these scores occur also greatly reduce in the shift from New Forest to Scot-
land, meaning that both the segmentation quality has decreased, but also the ability for the
model to delineate between the accurate and inaccurate pixels has degraded.

These quantitative results demonstrate that relying on the task-specific representation
of these pretrained segmentation networks leads to increasingly poor misclassification de-
tection as the magnitude of the distributional shift increases. This justifies the focus on
methods, such as ours in this chapter, that use additional data to learn a more task-agnostic

representation to prevent this severe degradation.
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~v-SSL Methods

Similar to the representation methods, the 7-SSL and y-SSL;; methods decrease in uncer-
tainty estimation quality for both AUROC and AUPR and both shifts. Considering only
7-SSL to begin with, the metrics are inconclusive about the robustness of uncertainty esti-
mation to shifts, with the representation methods being preferable for AUROC and y-SSL
being preferable for AUPR.

However this cannot be said for y-SSL;;, where the robustness to distributional shift
between New Forest and Scotland for this method is significantly better than the epistemic
and representation methods, and indeed the best of any individual method. This shows that
the curriculum approach massively the robustness of uncertainty estimation in a way that is
independent of the increases in segmentation accuracy that it also provides.

Clearly, the quantitative results show that this additional training on distributionally
shifted data greatly improves the representation by including the type of task-agnostic in-

formation required for misclassification detection.

6.9.3 Source: Cityscapes, Target: KITTI & BDD

In order to show that the proposed method is not overfit to the SAX datasets, we also use
KITTI and BDD as target domains. We can determine how distributionally shifted these
domains are from Cityscapes by considering the segmentation accuracy for a y-SSL model
on each of the test sets. The segmentation accuracies for KITTI, SAX London, BDD, SAX
New Forest are: 0.817, 0.703, 0.684, 0.595. This suggests that the ordering of increasing
segmentation accuracy is: KITTI, SAX London, BDD, SAX New Forest, SAX Scotland.

KITTI

7-SSL exceeds the uncertainty estimation quality of each of the baselines for AUROC, MaxAyp,
MaxF, while the MCD-DSL methods has a better AUPR. The epistemic methods are better

on average for KITTI, and each epistemic method outperforms each representation method.
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BDD

For each metric considered, y-SSL outperforms the baselines on BDD. Similar to KITTI, each
epistemic method has higher AUROC and AUPR than each representation method.
According to our analysis, SAX New Forest is more distributionally shifted than BDD,
however the metrics for BDD are lower than for SAX New Forest. This is possible because
BDD is significantly more diverse than SAX New Forest, which therefore makes learning

uncertainty estimation more of a challenge.

Table 6.2: Misclassification Detection AUROC with Source: Cityscapes

AUROC
Method LDN NF SCOT KITTI BDD
Ens-PEs  0.630 0.645 0.629 0.845 0.758
Ens-MIs 0551 0.612 0532 0.705 0.696

é Ens-PE;, 0.603 0.629 0.608 0.828 0.755
£ EnsMI,, 0554 0629 0527 0690 0713
‘s, MCD-PE,, 0.727 0.739 0.735 0.864 0.801
M Mcp-MT,, 0755 0.774 0725 0815 0.801
MCD-DST,  0.697 0.742 0.676 0.855 0.761
“Mean— 0645 0681 0633 0800 0.755
§ softmax 0723 0686 0674 0785 0.706
£ Softmax, 0722 0685 0.672 0784 0.705
£ FeatDist 062 0605 0607 0575 0.641
$ FeatDist, 0.645 0.642 0.585 0.585 0.648
£ ViM 0.635 0700 0.640 0.714 0.745
& DUM 0483 0565 0510 0501 0.502
“Mean— 0638 0647 0615 0657 0.658
g 4-SSL  0.895 0.880 0.776 0.888 0.835
&  4-SSLi. - 0.880 0.859 - -

Table 6.3: Misclassification Detection AUPR with Source: Cityscapes

AUPR
Method LDN NF SCOT KITTI BDD
Ens-PEs  0.714 0.733 0.663 0.956 0.854
Ens-MIs  0.663 0.737 0570 0910 0.830

é Ens-PE,, 0.710 0.724 0.634 0952 0.857
g Ens-MI,, 0.667 0.752 0.554 0905 0.840
‘D, MCD-PE,, 0851 0.859 0.737 0.926 0.816
M Mep-MT 0.2 0878 0.889 0.744 0956 0.904
MCD-DSL 0.785 0.818 0.602 0.957 0.851
—Mean- 0753 0.787 0.643 0.937 0.850
g Softmax 0711 0.631 0.525 0.840 0.686
L Softmaxa 0711 0.631 0524 0.840 0.686
% FeatDist 0.693 0.650 0.507 0.660 0.718
% FeatDist, 0721 0.699 0456 0.637 0.727
;& ViM 0.705 0.708 0.502 0.800 0.797
~ DUM 0.630 0.622 0.350 0.367 0.319
—Mean- 0.695 0.657 0.477 0.691 0.656
§ v-SSL 0949 0921 0.726 0951 0.911
e} v-SSL;y, - 0.942 0.887 - -
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SAX London
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Figure 6.4: For each SAX domain, a row of plots describes the misclassification detection
performance of a series of baselines and the proposed methods, 7-SSL and 7-SSLi.. Amp
and F., (shown in the plots as Fy ;) aggregate performance into a single metric, where a
larger value of each represents a more ‘introspective’ model. They are plotted versus p(a, c),
the proportion of pixels that are accurate and certain, as this represents the amount of ac-
curate and useful semantic information the model can extract from images; also a metric
maximised by the ideal model. Note that the maximum value of p(a, c) is equal to the seg-
mentation accuracy, max[p(a, ¢)] = p(accurate).

6.9.4 Source: BDD, Target: SAX Test Datasets

We also train our methods and the baselines on the labelled dataset from BDD. This is to
help up investigate the generality of each of the approaches, and to see how a different

source domains affects uncertainty estimation.
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Table 6.4: Maximum Ayp and p(a, ¢) with Source: Cityscapes

MaxAMD @ p(a, C)

Method LDN NF SCOT KITTI BDD
Ens-PEs  0.679 @0.560 0.652@0.581 0.634 @0.175 0.818 @0.751 0.734 @ 0.607
o Ens-MIs 0.645@0.620 0.643@0.613 0.580 @0.076 0.798 @0.797 0.692 @ 0.668
‘E  Ens-PE;, 0.678@0582 0.653@0.564 0.622@0.142 0.812@0.768 0.728 @ 0.602
£  Ens-MI,, 0.654@0.622 0.650@0.611 0578@0.079 0.798@0.798 0.698 @ 0.624
‘B, MCD-PE;, 0.750@0.646 0.745@0.645 0.679 @0.270 0.849 @ 0.792 0.765 @ 0.608
" McDMI,, 0744@0.640 0.748@0.625 0.681@0.234 0.833@0.823 0.754 @ 0.607
MCD-DSL  0.708 @0.559 0.708 @ 0.503 0.685@ 0.136 0.830 @0.745 0.738 @ 0.571
—Mean—- 0.694@0.604 0.686 @0.592 0.637 @0.159 0.795@0.782 0.730 @ 0.612
§ Softmax  0.689 @0.444 0.668 @0.396 0.657 @0.164 0.718 @ 0.434 0.692 @ 0.479
£ Softmax, 0.689@0446 0.668@0.401 0.656 @0.167 0.717 @ 0.435 0.692 @ 0.480
"é FeatDist 0.594@0371 0572@0.334 0.624@0.055 0.588@0.574 0.620 @ 0.489
$ FeatDistp 0.617@0.449 0.603@0.378 0.636 @0.032 0.564 @ 0.384 0.626 @ 0.502
% ViM 0.626 @ 0.546 0.641 @0.353 0.617@0.153 0.655 @ 0.386 0.687 @ 0.480
~ DUM 0.625@0.625 0.618@0.556 0.649 @ 0.000 0.733 @ 0.732 0.637 @ 0.635
—Mean—- 0.640@0.480 0.628 @0.403 0.640 @ (0.095 0.663 @ 0.491 0.659 @ 0.511
g ~7-SSL 0.83@0.625 0.796 @0.483 0.716 @0.260 0.856 @ 0.767 0.770 @ 0.568

O ¥-SSLiy, - 0.815 @ 0.608 0.781 @ 0.431 - -
Table 6.5: Maximum F./, Score and p(a,c) with Source: Cityscapes
MaxF1;, @ p(a, c)

Method LDN NF SCOT KITTI BDD
Ens-PEs  0.732@0.520 0.708 @0.460 0.604 @ 0.206 0.889 @ 0.613 0.801 @ 0.496
i Ens-MIs 0.694@0.609 0.691@0.605 0.528@0.461 0.832@0.795 0.758 @ 0.472
g Ens-PE;p 0730 @0.539 0.707 @0.517 0.574 @ 0.168 0.880 @ 0.608 0.795 @ 0.492
% Ens-MI;; 0702@0.603 0.696@0.597 0.522@0.460 0.833@0.761 0.767 @ 0.488
i MCD-PE,., 0.812@0.584 0.813@0.559 0.678@0.248 0.914 @ 0.686 0.836 @ 0.530
MCD-MI,., 0.8l6@0.541 0.825@0.523 0.687 @0.215 0.891 @ 0.669 0.836 @ 0.500
MCD-DSL  0.764@0.499 0.770@0.441 0568 @0.155 0.900 @0.644 0.802 @ 0.491
—Mean—- 0750 @0.556 0.744 @0.529 0.594@0.273 0.877 @ 0.682 0.799 @ 0.496
§ Softmax 0.726 @ 0.395 0.687 @0.370 0.555@0.205 0.777 @ 0.366 0.735 @ 0.429
£  Softmax, 0.726@0.397 0.687@0.373 0.554@0.207 0.777 @ 0.366 0.735 @ 0.430
c FeatDist 0.645@0.371 0.601@0.408 0487 @0.240 0.640 @ 0.571 0.672 @ 0.434
% FeatDist, 0.672@0.360 0.643@0.296 0449@0.240 0.612@0.525 0.680 @ 0.428
;L ViM 0.658 @ 0.543 0.667 @0.326 0.520@0.243 0.721 @0.324 0.735 @ 0.391
~ DUM 0.676 @0.625 0.664 @0.528 0.419 @0.315 0.774 @0.731 0.686 @ 0.635
—Mean—- 0.684@0.449 0.658 @0.384 0497 @0.242 0.717 @0.481 0.707 @ 0.458
g ¥-SSL 0.893 @ 0.548 0.855 @0.407 0.678 @0.239 0.920 @ 0.676 0.843 @ 0.475

@) v-SSLiy, - 0.885 @0.532 0.826 @ 0.370 - -

Training the baselines on BDD increases the quality of uncertainty estimation for epis-
temic and representation methods according to each of the metrics. For the MaxF/ scores
of the baselines, the increase from Cityscapes to BDD for SAX London, SAX New Forest,
SAX Scotland are: 9.1 %, 14.6 %, 26.2 %. This corresponds with the fact that there is a smaller
distributional shift between BDD and SAX Scotland.
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Target: SAX London

7-SSL has the highest quality uncertainty estimation out of all of the methods for this target
domain, characterised by a 6.5 % increase in MaxF., over the next best score (held jointly by
Softmax, Softmax, and MCD-PE, ,).

In contrast to what is true for the baselines, the uncertainty estimation performance for
the v-SSL models are higher using Cityscapes as the source domain than BDD. The segmen-
tation accuracy for -SSL is also higher for Cityscapes than for BDD, with 0.703 and 0.688

respectively.

Target: SAX New Forest

Contrary to SAX London, the segmentation accuracy for 7-SSL using BDD as the source
domain is higher than that of using Cityscapes (0.666 and 0.595 respectively). This implies
smaller distributional shift between BDD and SAX New Forest than Cityscapes and SAX
New Forest.

7-SSL and v-SSL;;, models outperform each of the baselines on all metrics apart from
AUPR. Unlike what is predicted according to the relative distributional shifts, the uncer-
tainty estimation performance of our models trained on BDD as source are not consistently
better than those trained on Cityscapes. This is perhaps again because of the significant di-
versity in BDD compared with Cityscapes. Therefore, the appearance and semantics of the

latter are more concisely described, making distributional uncertainty estimation easier.

Target: SAX Scotland

Using BDD as the source domain for v-SSL makes a significant positive change to the un-
certainty estimation performance over using Cityscapes. This is also true for y-SSL;;, but to
a lesser extent. Looking at the segmentation accuracies with BDD and Cityscapes as source,
gives us 0.495 and 0.431 respectively. Therefore, as described above, BDD is closer to SAX
Scotland than Cityscapes, and this helps explain the benefit of using it in this case.

In this experiment, the epistemic methods are much better than the representation meth-

ods and perform comparably with v-SSL;j.
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Conclusions

These experiments help us describe how uncertainty estimation performance changes de-
pending on which training dataset and test dataset considered. They show that our pro-
posed methods perform very favourably to the baselines, and are typically the best per-
forming method even when considering those methods that are too computationally heavy

to use for mobile robotics applications (namely the epistemic methods apart for MCD-DSL).

Table 6.6: Misclassification Detection AUROC and AUPR with Source: BDD

AUROC AUPR
Method LDN NF SCOT Method LDN NF SCOT
Ens-PEs  0.781 0.854 0.862 Ens-PEs  0.896 0941 0.885
, Ens-MI; 0744 0809 0818 , EnsMIs 0876 0915 0.837
‘e Ens-PE;, 0785 0.854 0.866 'S Ens-PEy,  0.899 0.942 0.880
&Uj Ens-MI,, 0.761 0.827 0.861 % Ens-MI;, 0.884 0.925 0.870
‘B, MCD-PE, , 0.834 0.841 0.822 ‘R, MCD-PE, , 0.903 0.881 0.798
M McpwMI,, 0.808 0816 0.739 M McpMI,, 0.880 0.863 0.728
MCD-DSL  0.821 0.803 0.805 MCD-DSL  0.902 0914 0.849
—Mean- 0.791 0.829 0.825 —Mean— 0.891 0912 0.835
g Softmax 0.825 0.819 0.810 g Softmax 0901 0904 0.816
£ Softmax, 0825 0819 0810 £ softmax, 0901 0905 0.816
g FeatDist 0.605 0.599 0.563 *qa) FeatDist 0.724 0.731 0.547
¢ FeatDist, 0.625 0.631 0.598 ¢ FeatDist, 0.758 0.770 0.604
§ ViM 0.663 0.664 0.560 g ViM 0.799 0.797 0.547
[ DUM 0.480 0.431 0.398 [ DUM 0.549 0.530 0.321
—Mean—- 0.671 0.661 0.623 —Mean- 0772 0.773 0.608
g 4-SSL 0.889 0.876 0.833 g 4-SSL 0.936 0.935 0.858
6  7-SSLit - 0.882 0.855 A  7-SSLiy - 0928 0.900

Table 6.7: Maximum Ayp and p(a, ¢) with Source: BDD

MaxAup @ p(a,c)
Method LDN NF SCOT
Ens-PEg 0.739@0.630 0.783 @0.621 0.790 @ 0.347
Ens-MIs 0.716 @ 0.623 0.766 @ 0.637 0.753 @ 0.343

é Ens-PE;, 0741 @0.619 0.783 @0.627 0.792 @ 0.331
£ Ens-MI;,, 0727@0.619 0.774@0.629 0.797 @ 0.351
‘B, MCD-PE,, 0.753@0.488 0.760@0.390 0.766 @ 0.217
H MCD-MI,., 0.729@0.454 0.742@0.362 0.729 @0.176

MCD-DSL  0.756 @ 0.549 0.761 @ 0.638 0.727 @ 0.387

—Mean- 0.737@0.569 0.767 @0.558 0.765 @ 0.307
§ Softmax 0761@0.553 0.760@0.573 0.755@0.275
+ Softmax, 0761@0.554 0.761@0.574 0.754 @0.275
"g FeatDist 0.673@0.609 0.677 @0.674 0.603 @ 0.154
$ FeatDistp 0.706@0.646 0.727 @0.668 0.590 @ 0.265
;’; ViM 0.662 @0.662 0.683 @0.608 0.588 @0.114
~ DUM 0.562 @0.562 0.596 @ 0.596 0.604 @ 0.000

—Mean- 0.688@0.598 0.701 @0.616 0.649 @0.181
g ¥-SSL 0.818 @0.599 0.805 @ 0.567 0.762 @ 0.331
@) ¥-SSLiy, - 0.809 @ 0.578 0.769 @ 0.417
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Table 6.8: Maximum F./ Score and p(a, ¢) with Source: BDD

MaxF/, @ p(a, c)
Method LDN NF SCOT
Ens-PEs  0.810@0.488 0.872@0.500 0.829 @ 0.307

R Ens-MIs 0.792@0.484 0.839@0.528 0.777 @ 0.290
§ Ens-PE;; 0.814@0.488 0.872@0.500 0.825 @ 0.284
2 Ens-MI,, 0.802@0.483 0.855@0.519 0.815@0.309
i MCD-PE,., 0.833@0.403 0.814@0.328 0.748 @ 0.199
MCD-MI,., 0.820@0.380 0.803@0.311 0.685 @ 0.163
MCD-DSL  0.829@0.460 0.839 @0.525 0.769 @ 0.319
—Mean- 0.814@0.455 0.842@0.459 0.778 @ 0.267

§ Softmax 0.833@0.465 0.835@0.483 0.764 @ 0.241
+ Softmax, 0.833@0468 0.836@0484 0.764@0.241
"qg')' FeatDist 0.730@0.564 0.731@0.566 0.534 @ 0.191
% FeatDistp 0.755@0.614 0.778@0.621 0.592 @ 0.285
;S; ViM 0732 @0.433 0.747 @0.541 0.511 @0.214
~ DUM 0.616 @0.562 0.648 @0.596 0.451 @ 0.396

—Mean- 0.750@0.518 0.763 @ 0.549 0.603 @ 0.261
7-SSL 0.887 @ 0.515 0.873@0.495 0.797 @ 0.284
v-SSLiy, - 0.885 @ 0.501 0.831 @ 0.348

Ours

6.10 Evaluating uncertainty estimation on a general target
domain

As discussed in Section|6.1.1, we are interested in evaluating the extent to which using dis-
tributionally shifted driving images from one domain improves quality of uncertainty es-
timation for a wide range of driving domains, i.e. investigating the extent to which our
proposed models have generalised. This is achieved by training using labelled images from
Cityscapes with unlabelled images from each of the SAX domains, and then testing on the

WildDash dataset. The results for this are found in the next section.

6.10.1 Target: WildDash

In the preceding evaluations, y-SSL and 7-SSL;; have been tested in domains for which the
model had access to unlabelled training images for that domain. In this experiment, each
of the baselines, 7-SSL and 7-SSL;;, are tested in an entirely unseen and very challenging
domain, namely WildDash, [134] (see Section M for more detail).

This dataset is very challenging, but is a good way of testing the extent to which a
given model can perform general distributional uncertainty estimation. As discussed in
Section|6.1.1 we are interested in evaluating the extent to which using a specific distribution-
ally shifted driving dataset from one domain improves general distributional uncertainty

estimation, as well as for the domain of the unlabelled target training dataset.
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The results for this can be found in Figure It can be seen in this plot that y-SSL;-
SCOT outperforms each of the baselines in terms of MaxAyp, MaxF., and PR, with this
backed up by scores of AUROC and AUPR of 0.852 and 0.896 respectively compared with
scores of 0.803 and 0.868 for the best performing baseline, Ens-PEs.

The key thing to conclude from this experiment is that although the y-SSL;; models have
been trained to detect segmentation error in a specific target domain, the representation
learned from this generalises well to general driving datasets. Therefore, this suggests that
this method is a promising approach for mitigating segmentation error for driving datasets
generally, as was hypothesised in the discussion in Section|[6.1.1]

Another aspect worth noting is that misclassification detection metrics when testing
7-SSL;;-SCOT on WildDash are lower than that of testing on SAX Scotland. This confirms
that, if possible, it is still better to leverage unlabelled images from the domain which could
be encountered during a deployment, as the highest quality uncertainty estimation can be

learned in this way.
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Figure 6.5: Misclassification detection results on the WildDash Dataset [134]. y-SSL-LDN
refers to a y-SSL model trained on the SAX London unlabelled dataset, whereas v-SSL;.-
NF, y-SSL;-SCOT refer to y-SSL;;, models that are trained on the SAX New Forest and SAX
Scotland unlabelled datasets, while also using SAX London as part of a curriculum.

6.11 Miscellaneous experiments

In addition to the improvements in uncertainty estimation quality, we investigate a number

of other facets of our proposed method.
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Firstly, the results in Section [6.11.1]show how the number of labelled validation images
used to calculate an optimal threshold affects the quality of uncertainty estimation. The
proposed method calculates a threshold during training, and this section shows that this
threshold provides similar uncertainty estimation quality, without the requirement for la-
belled validation images.

Secondly, the results in Section [6.11.2] show the extent to which the optimal threshold
calculated for one domain is optimal for testing on another domain. They show that there is
insignificant degradation in quality of uncertainty estimation due to using a threshold from
another domain.

Finally, Section [6.11.3) presents the latency of each of the baselines (described in Sec-
tion [6.8), and shows that our proposed models are significantly faster than high quality

alternatives.

6.11.1 Calculation of the optimal threshold

When considering the Ayp and F.), scores, there is an obvious point at which these scores
are maximised (seen in Figure|6.4), which corresponds to an optimal threshold. This thresh-
old can be calculated with a set of labelled validation images from the domain of interest.
This requires using additional labelled validation images, and if this validation set is not
representative of the test set, the uncertainty estimation quality could be worse.

For this reason, we investigate the effect of the number of validation images on uncer-
tainty estimation quality for the y-SSL models. We do this by holding out a validation set
from the test images, and testing on these remaining images. This is done over 100 differ-
ence combinations of validation and test set for each size of validation set. Interestingly,
given that v-SSL also calculates a threshold during training, we can get a threshold without
using any validation images and this is also investigated. The mean and spread of the Ayp
metric is shown as a box plot, Figure for [0, 1, 5, 20] validation images.

Figure M shows that the Ayp metrics are much more variable for small numbers of val-
idation images, as the validation set is less likely to represent the test set. It also shows
that there is no significant drop in uncertainty estimation performance by using 0 valida-

tion images versus using 20, which demonstrates a very useful characteristic of the y-SSL
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Figure 6.6: Box plot representing the achieved Ayp by calculating the uncertainty threshold
with varying numbers of validation examples for a y-SSL model. The dashed lines repre-
sent the values of Ay achieved when using the entire test dataset to calculate the optimal
threshold, before then testing on it.

method.

6.11.2 Calculating thresholds across domains

It is also important to look at the effect of using a threshold calculated to maximise uncer-
tainty estimation performance in one domain on the uncertainty estimation performance in
another domain. The concern would be that a threshold that is chosen on one domain, and
is therefore chosen for deployment, might be very sub-optimal for another domain, leading
to dangerously poor uncertainty estimation.

This is investigated for a given domain, by comparing the F., at the optimal threshold to
the F1/, score obtained using a threshold calculated from different domains. The results for
this can be found in Table@ For each 7y-SSL;; model trained with unlabelled data its target
domain (e.g. y-SSL;-LDN is trained using SAX London unlabelled images) we calculate the
F./ score using the optimal threshold for that given model in its target domain and report
the percentage change as A.

This table shows that there is only a very slight decrease in uncertainty estimation quality

as a result of using the threshold that is optimal for a different domain.
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Table 6.9: Cross-Domain Threshold Testing Results

(a) y-SSL;-LDN

MaxFi, Fij, with y-LDN A

LDN  0.8930 0.8930 0%
NF 0.8827 0.8822 —0.058%
SCOT 0.7853 0.7839 —0.175%

(b) y-SSLi1-NF

MaxFi, Fi, with -NF A

LDN  0.8834 0.8832 —0.017%
NF 0.8849 0.8849 0%
SCOT 0.7952 0.7949 —0.038%

(c) ¥-SSL;1-SCOT

LDN  0.8768 0.8764 —0.038%
NF 0.8806 0.8805 —0.007%
SCOT 0.8257 0.8257 0%

6.11.3 Latency Evaluation

We have made the argument that the epistemic methods can provide high quality uncer-
tainty estimates, however are computationally very demanding. To prove this quantita-
tively, we have provided the frequency at which different methods can operate in Table|6.10}
We run the methods on two very different pieces of hardware, namely a NVIDIA V100 GPU
and the CPU on a MacBook Pro containing a M2 Pro CPU.

Table 6.10: Timing Results

Method GPU [Hz] CPU [Hz]

Vanilla 159.12 1.53
MCD 19.62 0.46
Ens-5M™ 5.27 0.75
Ens-5™ 27.22 0.75
Ens-10™ 2.99 0.38
Ens-10" 16.64 0.38
4-SSL 18337 152

The Vanilla method is a DeepLabV3+ segmentation network and thus represents the
representation methods apart from DUM. The difference between Vanilla and y-SSL (which
is architecturally the same as 7-SSL;;) is that the latter uses prototype segmentation rather
than a segmentation head. The definitions of MCD and Ens are the same as those in previous

experiments, where 8 samples are taken from the MCD model and the size of the ensemble is
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shown in the method names.

For the ensemble methods, we use two different types of inference, denoted by the su-
perscript LM and HM. These stand for Low Memory and High Memory, where the former
only loads one member of the ensemble on the GPU at the same time, and the latter loads
each member onto the GPU then performs inference on the members sequentially. The LM
method is therefore slower but uses less memory compared with the HM method.

The key finding here is the confirmation that the epistemic methods have a significantly
lower frequency of operation, and therefore a higher latency. Our 7-SSL models are the

same speed or faster than a standard segmentation network.

6.12 Qualitative Results

In Figure [6.7, we present test images from the SAX Test Datasets with an image from the
source domain, alongside their semantic segmentation over the known classes (middle) and
then segmentation into the known classes or uncertain (right).

As can be seen, the y-SSL model is trained to semantically segment the source domain
very accurately, however when presented with distributionally shifted images, the segmen-
tation quality begins degrade (middle). This is however mitigated by the v-SSL models by
expressing uncertainty over regions of the segmentation that are inaccurate. To describe a

few of the examples:

¢ In the first SAX London image, there is a street sign which is unfamiliar to a model

given the semantic definitions in Cityscapes

¢ In the second SAX New Forest image, there is a red telephone box, the appearance of
which would not be found in the German cities in which Cityscapes is collected, and

is not part of the known classes.

¢ In the first SAX Scotland image, there is a pile of wood, which is unlikely to be found

in a German city, and not one of the known classes.

By looking at the right column in Figure [6.7, each of these instances are detected and

assigned high uncertainty.
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(a) Cityscapes

(b) London

(c) New Forest

(d) Scotland

Figure 6.7: Qualitative results for Cityscapes and the SAX domains. As the SAX RGB im-
ages (left) become more dissimilar from Cityscapes (from top to bottom), the corresponding
semantic segmentations (centre) decrease in quality. However, for these poorly segmented
regions, high uncertainty is largely expressed over them, shown in black (right).
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6.13 Ablation Studies

In order to investigate the effect of each component of the proposed system, we perform a
series of ablation studies. From these experiments, we are able to confirm that the choices

made in the design of the system are beneficial.

6.13.1 Estimating Uncertainty via Distance to Prototypes

This experiment investigates to what extent does the y-SSL work as a result of the improve-
ment in the learned representation or the method for calculating uncertainty, i.e. by calcu-
lating the mean feature vector per class and computing the distance between the prototypes
and a given pixel-wise feature of a test image.

This investigation is implemented by training a network on the source domain alone,
and then calculating prototypes as we do in y-SSL. In this way, the representation being
used is the same as the representation baselines (apart from DUM) and so a direct comparison
over uncertainty estimation inference procedures can be made. The results for this ablated
method are under the name NoSSI, as it is 7-SSL without performing the semi-supervised
learning on the unlabelled target images.

By comparing Table|6.11|to Table|6.2|and Table [6.3] we can see that this ablation outper-
forms the representation methods. This means that estimating uncertainty in this manner is
clearly a good method, and supports the assumption that calculating M” in the way that is
done is an important part of setting up the positive feedback loop.

However the key finding is that the performance of NoSSL is significantly worse than
7-SSL and y-SSL;;,. This is important evidence that the training in these methods allow the

model to learn a representation that is more suited to performing uncertainty estimation.

6.13.2 Importance of target domain images

In the proposed method, we have performed a different type of training with a different
type of images. It is therefore worth determining if the benefits of the training method are
independent of the type of data used. In this experiment, we use Cityscapes images instead

of the unlabelled target domain images. The results for these are therefore under the name
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Table 6.11: Misclassification Detection results over three metrics for the models trained with

ablated versions of the method proposed in this work.

AUROC AUPR
Method LDN NF SCOT |LDN NF SCOT
NoSSL 0.803 0.774 0.72 | 0.872 0.829 0.686
" NoSAX 0.793 0.771 0.669 | 0.824 0.794 0.455
g MY=T 0.805 0.761 0.711 | 09 0.827 0.646
b= SymParam  0.851 0.598 0.622 | 08 0.539 0.486
3:3 SymNonParam 0.643 0.643 0.621 | 0.382 0.235 0.165
NoRegL 0.815 0.827 0.72 |0.882 0.847 0.621
MCD-SSL 0776 081 0.705 | 0.794 0.857 0.592
g 7-SSL 0.895 0.88 0.776 | 0.949 0921 0.726
O v-SSLiy, - 0.88 0.859 - 0.942 0.887
(a)
MaXAMD @ p(a, C)
Method LDN NF SCOT
NoSSL 0.727 @0.482 0.706 @ 0.424 0.680 @ 0.204
" NoSAX 0729 @0.465 0.717 @ 0.463 0.653 @ 0.003
g M= 0.754 @0.586 0.692@0.426 0.685 @ (0.174
b= SymParam  0.790@0.253 0.596 @ 0.368 0.756 @ 0.053
EE SymNonParam 0.752 @ 0.015 6:864@0-000 0-902-@0.000
NoRegL 0.766 @ 0.552 0.748 @ 0.391 0.665 @ 0.201
MCD-SSL 0.747@0.594 0.748 @0.482 0.707 @0.153
g v-SSL 0.83@0.625 0.796 @0.483 0.716 @ 0.260
@) 7-SSLit, - 0.815@ 0.608 0.781 @ 0.431
Struck through results are discounted as no pixels are confidently segmented.
(b)
MaxF., @ p(a,c)
Method LDN NF SCOT
NoSSL 0.790 @ 0.380 0.753 @ 0.364 0.626 @ 0.203
" NoSAX 0.769 @ 0.401 0.756 @ 0.403 0.505 @ 0.220
& MY 0.826 @0.492 0.746 @ 0.353 0.602 @ 0.184
= SymParam  0.731@0.219 0.608 @ 0.381 0.495 @ 0.057
% SymNonParam 0.394@0.088 0.281 @0.030 0.210 @ 0.017
NoRegL 0.806 @ 0.507 0.781 @ 0.332 0.569 @ 0.241
MCD-SSL 0.809 @0.518 0.804 @ 0.416 0.589 @0.159
g v-SSL 0.893 @0.548 0.855 @ (0.407 0.678 @ 0.239
@) ¥-SSLir, - 0.885@(0.532 0.826 @ 0.370

()
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NoSAX.

Looking at Table [6.11} it can be seen that the AUROC and AUPR of NoSAX are worse
than that of y-SSL. This makes it clear that using target domain images is important to
performing good uncertainty estimation. This puts into focus the importance of, not just

training algorithm, but the type of data in this method.

6.13.3 Importance of M" in the training objective

In Section [6.5] we make the point that is important to only maximise the consistency over
pixels that are likely to be accurate (approximated by those that are certain). In this exper-
iment, we question this and apply more standard semi-supervised learning in which we
maximise the consistency over all pixels. It can be argued that the semi-supervised learning
will improve the representation of the target domain, such that uncertainty estimation will
be improved, and thus it is not necessary to specialise the objective for uncertainty estima-
tion. This experiment is called M*=~°.

The results for this, seen in Table[6.11, show that quality of uncertainty estimation for
7-SSL is better than that of M"=~>°. Therefore, we can conclude that there is benefit to spe-

cialising the objective specifically for uncertainty estimation.

6.13.4 Importance of Branch Asymmetry

In Section 6.5.4) we make the point that having two segmentation functions f and g that are
not the same helps to prevent feature collapse. To empirically investigate this, we use two
different methods: SymNonParam and SymParam. Both of these methods have symmetric
branches, but for the former, both branches use prototype segmentation (hence symmetric
non-parametric segmentation), while for the latter, they both use segmentation heads (hence
symmetric parametric segmentation).

In each method’s case, the same feature collapse nearly always occurs, where pixels are
segmented typically as one or two classes in a fixed pattern for all images, where one of these
classes is almost always road. The only exception to this is for SymNonParam on the SAX
New Forest dataset. The characteristics of this collapse is that the segmentation accuracy

becomes very poor, even while the AUROC and AUPR are reasonably good. So firstly, these
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experiments provide us with evidence that having asymmetric branches helps to prevent
feature collapse, as can been seen in Table [6.11] Secondly, it gives a good illustration of how
important it is not just to look at AUROC and AUPR when evaluating a model, and that

incorporating p(a, c) into MaxF./, and MaxAyp is a useful way of doing this.

6.13.5 Importance of " and LP

We presented the use of L" and LP as objectives to help prevent feature collapse and to
benefit uncertainty estimation. By removing these losses, we can investigate their effect, in
a method named NoRegL.

When using this method, as can be seen in Table [6.11} there is not a complete feature
collapse due to the presence of using branch asymmetry as well, but the quality of uncer-
tainty estimation is significantly reduced. This confirms for us the benefit of uniformity in
the representation for uncertainty estimation, and backs the hypothesis that this encourages

selectivity in which pixels can be near the prototypes and which cannot.

6.13.6 Importance of Crop-and-Resize Data Augmentation

The entirety of this method is designed using the foundation of crop-and-resize data aug-
mentation. The argument is made that we can investigate the limits of the segmentation
network’s knowledge by perturbing images in this way and looking at the resulting seg-
mentation performance, as performed in SSL.

Alternatively, as per the epistemic methods, it is also possible to consider the model
parameter distribution, by perturbing the model parameters instead of the training images.
Doing this, we can define a method that uses dropout instead of data augmentation, and
then compare segmentations produced by two perturbation of the model parameters. For
this method, the dropout probability of 0.2 is used as this was found to be optimal for the
baselines. This method is given the name MCD-SSL.

As seen in Table [6.11} this method does largely work, however it does not produce the
quality of uncertainty estimates as y-SSL does. This justifies the use of data augmentation
in order to induce the distribution of possible segmentations, which encodes distributional

uncertainty.
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6.13.7 Importance of using hard M’

In the method, we make binarize the uncertainty estimations to get M € {0, 1}*"". We can
try and determine if this was a good design choice by investigating the alternative which is
to use soft M" € R”*". To do this, we propose to calculate M” for a given pixel i in the
following way:

M7 = norm(max|[softmax.(1;)]) € [0, 1] (6.14)

Where max[softmax; (1;)] iS pmax, and norm(+) is a normalisation function. This normalisation
function is needed as the scaling of the uncertainty estimates is not in any way guaranteed
to be optimal for use in training. norm is chosen to normalise each M € R”*", such that
the minimum and maximum values are 0 and 1.

This experiment is performed using Cityscapes as the source domain and SAX London as
the target domain. When testing this model again on the SAX London domain, the MaxF,
score is 0.862 at a value of p(a,c) of 0.421, with a corresponding segmentation accuracy of
0.576. The corresponding v-SSL model with a binary M has a MaxF', score of 0.893 with a
p(a, c) of 0.548, and a segmentation accuracy of 0.70.

This shows that the quality of uncertainty estimation is worse using M and the seg-
mentation quality even more significantly reduced. Therefore, the soft certainty mask adds
noise to the consistency task in a way that makes it much more difficult to learn a good

representation of the target domain.

6.13.8 Possibility of class-wise thresholds

In the y-SSL methods, we define a single value as the threshold for each of the class proto-
types. It can however be argued that it might be more optimal to have a different threshold
for each class prototype, as different classes are likely to be distributed differently, owing to
their different prevalence’s and appearance differences. For example, the road class is very
prevalent, and yet is almost always looks the same, and so you might expect it to be embed-
ded quite tightly. However a class such as traffic sign varies much more in appearance
and it corresponds to far fewer pixels in the training datasets, therefore you can imagine that

this class would have a much larger spread.
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To investigate whether this is an important aspect of the problem to consider, we develop
a method that solves for a different threshold for each class. The thresholds for each class
are calculated such the per-class certainty [p,]; and per-class consistency [p]; are equal, just

as in the above method.

B "& 1fargmax(l) = k] @ M]
= D S  fagmax(l) = 4 (649)
NHW B .
s = Z 1[argmax(l;) = k] © MS (6.16)

— Zjvjw I[argmax(l;) = k]
By equating these we can calculate the per-class thresholds T’ = [y, 79, ...7x] € R¥. Then
the certainty mask M is calculated for every pixel i:

M = 1[max(1;) > Vi=argmax(,)] (6.17)

7

Using this described method, the uncertainty estimation quality was significantly worse
than for 7-SSL with a single threshold. It reported a MaxF.;, and p(a,c) of 0.772 @ 0.432
versus 0.893 @ 0.548 for y-SSL.

Therefore, using a class-wise threshold degrades the learning of good uncertainty esti-
mation, and so it is both easier and more performant to use a single threshold as in our

method.

6.13.9 The need for large batch sizes to calculate prototypes

In the 7-SSL method, the prototypes are re-calculated at each iteration from a sampled batch
of labelled source images. Therefore, it is possible to argue that the y-SSL method is too
computationally demanding due to the need to have large batch sizes (and thus large GPU
memory usage) in order to prevent the prototypes from being too noisy.

The concerns for this problems are diminished by the fact that the batch size used in
training was 12, meaning that the training could fit on a single GPU with 12GB of vRAM.
We can however also consider how small the batch size can be in order to successfully learn
to perform uncertainty estimation, in order to investigate if the training would work with

less good hardware or scale to larger image sizes.
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This method implements a scheme that prevents the issues associated with the limits
caused by calculating the prototypes at every training iteration. When sampling a batch of
labelled images, there is no guarantee that this batch contains pixels that are labelled with
every one of the known classes. Therefore, without counting for this, the model cannot
assign pixels in the target image to one of these left-out classes. To prevent this we use
a history of class prototypes, where if a class is not present in the source batch, then the
most recently calculated prototype for that class is used. This helps to prevent the problems
associated with the need for large batch sizes.

We perform an experiment to investigate this problem, where the number of images
used to calculate the prototypes is varied, however the batch size for the rest of the training
method is kept the same. Then during testing, the prototypes were calculated using the
entirety of the labelled source dataset, as was done in all previous testing. This allows us to
investigate the effect of smaller batch sizes for the prototypes on the learned representation.
In Table we report the MaxFi/, and p(a, c) metrics for a range of prototype batch sizes,

along with segmentation accuracy.

Table 6.12: Results for varying Training Prototype Batch Size on SAX London

Prototype Batch Size Use history? MaxF., @ p(a,c) Segmentation Accuracy

12 Yes 0.893 @ 0.548 0.703
8 Yes 0.888 @ 0.559 0.719
6 Yes 0.892 @ 0.546 0.712
2 Yes 0.882 @ 0.518 0.693
2 No 0.827 @ 0.538 0.690

Table [6.12 shows that if we maintain a history of prototypes, then the quality of un-
certainty estimation and semantic segmentation does not significantly depend on the used
batch size. However when the history is not used, there is a significant hit to the quality of
uncertainty estimation. This is because, despite there being prototypes for the most preva-
lent classes, e.g. road, building and sky, and the segmentation accuracy can be mostly the
same, the model has prototypes which are vectors of zeros for the rest, therefore the categor-
ical distribution from which the uncertainty is calculated is significantly affected. However,
it is interesting that the uncertainty estimation quality does not completely degrade in this
setting, perhaps owing to the robustness of using cosine distance as a measure of uncer-

tainty.
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6.14 Conclusion

This chapter has presented a method to perform distributional uncertainty estimation which
uses an unlabelled target domain training dataset, which contains instances that are in-
distribution, near-distribution and OoD within the same image. While challenging to work
with due to the lack of segmentation ground-truth, it promised to lead to higher-quality
distributional uncertainty estimation when compared with using a training dataset where
every image is significantly distributionally shifted from the source domain.

Empirically, it has been shown that this does indeed lead to high-quality distributional
uncertainty estimation. The significant challenge in this work became apparent when us-
ing an unlabelled target domain that was significantly shifted from source domain, namely
SAX Scotland. For this case, the quality of both segmentation and uncertainty estimation
degraded due to the large distributional shift. In this work, this was solved by using a cur-
riculum, and firstly training on a less distributionally shifted domain, namely SAX London.

Solving this problem is of great interest to us, because it is very important that quality of
uncertainty estimation does not degrade in the same manner as the quality of segmentation.
This problem will be further investigated in the next chapter, with a method that firstly uses
large-scale self-supervised training to learn a general feature representation, such that large

distributional shifts are not as damaging to learned uncertainty estimation.
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This chapter presents a method that builds on the ideas presented in both Chapter|5/and
Chapter |6 It considers the same problem setting of Chapter 6| where labelled images from
a source domain and unlabelled images from a distributionally shifted target domain are
used to train a model to perform uncertainty estimation. However, much like Chapter |5
it also considers the use of large-scale image datasets for learning a general task-agnostic
representation.

The way in which these two approaches are combined is influenced by the recent advent
of foundation models in computer vision. These are neural networks that are trained on a
broad distribution of image data, in order to be capable of solving many different computer
vision tasks with minimal additional training.

This chapter investigates the way in which these models can be used to improve the
quality of distributional uncertainty estimation, and presents a training framework for this
in Section [7.3| The crucial final step in this framework is a method that we present in Sec-
tion[7.4| which trains a model to learn uncertainty estimation from unlabelled target domain
data using a Masked Image Modeling (MIM) task.

Experiments, described in Section [7.6] are performed in order to quantify the benefits
of using a foundation model for uncertainty estimation, and the additional improvements
seen when using our proposed method. The results for these experiments are presented in
Section[7.71

This work was first presented in:

e D. Williams, M. Gadd, P. Newman, and D. De Martini, “Masked ~-SSL: Learning Un-

certainty Estimation via Masked Image Modeling”, IEEE International Conference on
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Robotics and Automation (ICRA), 2024.

7.1 Foundation Models

7.1.1 Preliminaries on Foundation Models

Foundation models are deep neural networks that are trained such that they can easily be
adapted to solve a wide range of downstream tasks on a broad distribution of data. In order
for this to be possible, they need to learn a general feature representation, i.e. they need
to extract salient information from a diverse set of data. In the case of computer vision,
foundation models need to be able to extract semantic and geometric information from any
given natural image.

Currently, the requirements for achieving this are: (1) a very large neural network must
be used, and (2) it must be trained on a very large and diverse dataset. As a result of the
second of these requirements and the cost of annotating data, self-supervised learning is
used to train these models, which has been discussed previously in Section 3.5.3) Chapter 5]
and Chapter|6|

For computer vision, as well as other modalities, foundation models are based on the
transformer neural network architecture [37]. This architecture has been adapted from its
NLP origins for computer vision applications, with the primary change being to how the
input is tokenised. In architectures such as ViT [36] and its variants, an input image is
split into patches, which are each individually embedded. The patch embeddings are then
processed by the standard transformer self-attention blocks proposed in [37].

As a result, computer vision foundation models take the form of a transformer encoder,

which is represented by E : R¥*#xW — RF*HxW where F is the length of the output features

Hw)

and (H,W) are the spatial dimensions. Due to the patch tokenisation, (H, W) = (55

where P is the patch size.

7.1.2 Foundation Models for Semantic Segmentation

It is possible to apply these types of foundation models to a task without any adaptation

via non-parametric inference with the features, e.g. nearest-neighbour classification or pro-
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totype segmentation (described in Section [6.2.1). However, in order to maximise the perfor-
mance on a given task, the parameterisation of the model is typically changed in some way.
A simple example of this is the addition of a linear layer on top of the model for classifica-
tion, which outperforms nearest-neighbour classification on ImageNet, as seen in [31], [32],
[106].

A number of different methods can be used to adapt a transformer encoder for semantic
segmentation. The simplest is to freeze the parameters of the encoder, and train a segmen-
tation decoder on top with a pixel-wise labelled dataset. Many different segmentation de-
coders have been proposed to do this, using both convolutional neural network (CNN) and
transformer blocks, e.g. [38]-[40], [148].

The above approach changes only how the features z, where z = E(x), are processed into
segmentations, z — y. Alternatively, the encoder itself can be adapted in a number of dif-
ferent ways. Firstly, the encoder can be fine-tuned with straightforward supervised learning
along with the decoder to solve a specific task. This, however, incurs a large training cost
for very large neural networks and so parameter-efficient fine-tuning (PEFT) methods, such
as LoRA [149], can be used.

LoRA leaves the original encoder parameters unchanged, but modifies the forward pass
by adding trainable low-rank weight matrices A, such that for the i layer E; of the encoder
E, Ei(x) = 0;x + [Af];x. Crucially, for 6; € R¥*, these additional low-rank weight matrices
are composed as A¢; = BA, where B € R A € R™* and r is small, e.g. r = 8. This
means that a small number of additional parameters need to be trained, leading to (1) lower
training cost, (2) no inference cost as 6 and Af can be combined, and (3) lower storage costs
as a model can be fine-tuned for a range of tasks with the only difference between these task
models being the addition of a small number of parameters, which are trivial to store.

A related approach to this is to augment the encoder architecture by adding additional
parameterised layers, such as in the adapter methods [150], [151]. Along with the decoder,
these layers are only trained with task-specific supervised learning.

The method in this chapter uses a segmentation decoder of the form found in Mask2Former
[148]. As will be discussed in Section|[7.6] we perform experiments both with and without en-

coder fine-tuning, in order to investigate how this affects uncertainty estimation (discussed
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further in Section [7.2).

7.1.3 Model Distillation

The methods discussed in Section [7.1.2] adapt the model to maximise its performance on a
specific task. Another reason to adapt the model is to reduce its size. Foundation models
are very large, and so incur a significant cost at inference time, which may be too great for
deployment on a mobile robot. As a result, it may be necessary to distill the representation
learned in the large foundation model into a model with fewer parameters.

Knowledge distillation, presented in [152], is a method that improves the supervised
training of a small model (named the student) by approximating the output of a larger, more
accurate pretrained model (named the teacher). More specifically, soft pseudo-labels are gen-
erated by the teacher model by applying a softmax function with a high temperature to the
logits, which are used to train the student alongside the supervised training. A similar ap-
proach is seen in [153], where the supervised distillation task is tailored to the transformer
architecture.

This idea is also applied to self-supervised learning, where, much like in supervised
learning, smaller models perform less well in training and testing. In [154], a self-supervised
method for distilling the representation of a large self-supervised model into a small model
is presented. A similar method is presented in DINOv2 [31], where a ViT-Giant with 1
billion parameters is distilled into a smaller ViT-Small model with 22 million parameters.
This distillation method was shown in [154] and [31] to be significantly more effective than
performing SSL training from a random initialisation.

In this chapter, we are interested in training a model that has a low inference cost, while
also benefitting from recently published foundation models. For this reason, we use the
distilled ViT-Small presented in DINOv2. This is important, as it allows us to investigate the
use of a model that is very general, but that is not prohibitively large for a mobile robotics

context.
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7.2 Uncertainty Estimation for Foundation Models

This thesis is interested in mitigating distributional shift and, as such, we must consider the
impact of recent foundation models on this.

There are two key considerations: (1) the extent to which fine-tuning a foundation model
degrades its generalisation ability, and (2) the extent to which foundation models can help
improve distributional uncertainty estimation as a result of their general representation.

As discussed in Section [7.1.2} in order to solve specific segmentation tasks, foundation
models need to be fine-tuned with a labelled training dataset. In doing this, the model
is optimised on what is likely to be a relatively small dataset and therefore the span of
data over which the model is optimal is likely to shrink as a result of fine-tuning (see the
discussion in Section [2.2). This means that, although the original foundation model may
not suffer greatly from distributional shift, the resultant fine-tuned model will suffer to a
greater extent. This is shown in [155], where, as a model is fine-tuned on one dataset, the
classification accuracy decreases substantially for seven different datasets.

Additionally, given the arguments made in Section 2.3.3|and Section 3.5.1|that neural net-
works typically cannot detect decreases in accuracy, and that supervised training does not
promote task-agnostic representations, it is also likely that the quality of the model’s uncer-
tainty estimates will decrease. Experiments described in Section[7.6} with results presented
in Section|[7.7} investigate whether this is empirically true.

As for the second consideration, given that foundation models are trained in such a way
as to learn task-agnostic information from diverse data, they also hold promise for being
very good at distributional uncertainty estimation. This has been previously discussed in
Section[3.5.2]and Section [3.5.3in the context of OoD detection, and then further in Chapter 5|
and Chapter [6|

We present a training framework in Section 7.3 and a method in Section|[7.4} that address
these considerations in order to train a semantic segmentation model which performs high-

quality distributional uncertainty estimation.

!Certainly small relative to the pretraining dataset owing to the cost of annotation.
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7.3 Training Framework

We propose a three-step framework that yields a foundation model fine-tuned for the se-
mantic segmentation of a given domain, that also produces high-quality distributional un-
certainty estimates.

The steps are (1) Pretraining, (2) Task Learning, (3) Uncertainty Training. The details of

these steps will now be discussed, with an illustration of each found in Figure

Step 1) Pretraining

i

Step 2) Task Learning

finit fo

Step 3) Uncertainty Training

finit : )
-~

Figure 7.1: A illustration of the three training steps of encoders E and decoders D, where the
subscript denotes their parameterisation. Firstly, an encoder is trained to produce a good
feature representation of a diverse set of natural images. This encoder forms the initialisation
of steps 2 and 3, where the encoder is fine-tuned, and a decoder is trained from scratch. Each
E and D are architecturally the same, but parameterised differently.

(1) Pretraining

This step trains an encoder Egy from scratch such that it can encode salient semantic and
geometric information from a broad distribution of natural images, i.e. it trains a founda-
tion model. As discussed in Section [7.1.3} if the deployment scenario necessitates a smaller
model, this step can also involve distilling the learned representation into a smaller model.
The resultant encoder Egy will be used to initialise the models that are trained in the next two

steps, such that each can benefit from this general representation.
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(2) Task Learning

In this step, a segmentation network is defined with the foundation model encoder Egy, and
a randomly initialised decoder D,.nq. This segmentation network will be trained to perform
a task of interest, resulting in the network fy = Dy o Ey.

In this work, the task is semantic segmentation of the source domain, which is achieved
with the corresponding source domain labelled training dataset. Note that by ‘task’, we
mean both whether we are considering image classification, depth regression, semantic seg-
mentation etc., but also the domain of data being used. In order to maximise the task per-
formance, i.e. maximising the quality of semantic segmentations on the source domain, the

encoder is also fine-tuned, hence the transform from Egy — Ey.

(3) Uncertainty Training

For this step, we propose a novel method, which is described in more detail in Section [7.4}
After the network f, has been trained to maximise its segmentation performance on the
source domain, it is frozen.

Due to the task-specific training in the second step, the representation of f, will be
less task-agnostic, resulting in poorer quality segmentation and uncertainty estimation for
distributionally-shifted target domains. As a result, we train another segmentation network
f,, which can segment the source domain as well as f,, but is also able to detect error due to
distributional shift. This is done by initialising the encoder of f; with Egy, and then jointly
performing uncertainty training and task learning (from step (2)) to give f, = D, o E;, where
again the encoder is fine-tuned from Epy — E,. While task learning promotes learning task-
specific features, the aim of uncertainty training is to maintain and refine the task-agnostic
features produced by Egy, as per the requirements set out in Section 3.5.2|and Section [3.5.3|

In the next section, we detail the method we have designed for this final step.

7.4 Uncertainty Training

The goal of this method is to expose the task-specific model f, to distributionally shifted

images and to find regions where segmentations are likely to be incorrect. Then, while
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Figure 7.2: Overview for the training on f, with the loss L¢. The training image x is per-
turbed by masking to give x" at ©. Then both images are segmented, and the soft con-
sistency H|[py, pj] and hard consistency M¢ between these segmentations are calculated, as
seen at @, where the latter is used to calculate the uncertainty threshold v. The model £,
then segments the unmasked image and estimates its uncertainty over this segmentation,
which is thresholded by 7, to give M at ®. Finally, the loss L¢ is calculated as the soft con-
sistency masked by the binary uncertainty estimate M, seen at @.

finding these erroneous image regions, the goal is to train a new network f, to learn the
appearance of these regions and to express uncertainty over them.
Designed to achieve this goal, the method presented in this chapter builds on the method

in Chapter [6|by introducing the following changes to improve the training process:

* A masking policy is introduced to perturb the input image, such that incorrect seg-
mentations can be found in a way that is less dependent on hyperparameters than a

crop-and-resize task.

¢ The encoder is initialised with weights from a foundation model, which aids the train-
ing of a model that learns the relationship between image appearance and distribu-

tional uncertainty.

* One of the training branches is frozen, resulting in a training method that is less sus-

ceptible to feature collapse, a problem discussed in Section 6.5.4}

7.4.1 Learning Uncertainty Estimation

The objective for training f, to learn distributional uncertainty estimation in this chapter

is similar to the objective presented in Section [6.5, They rely on the assumption that the

155



consistency in segmentation of two images, which are perturbations of each other, can serve
as an approximation of ground-truth segmentation accuracy. We describe the objective in a

series of steps, which correspond to the numbers, e.g. @, in Figure|[7.2}

(1) Perturbing the input

In this work, the perturbed images are x and x", where the latter is a masked version of
the former, i.e. x™ = m(x) for a masking function m, as shown at @ in Figure Therefore,
instead of using a crop-and-resize policy as in Chapter|f this work uses a masking policy in
order to perturb the input image and find regions of likely segmentation error. This follows
from the SSL literature, which is increasingly using masking as well as, or instead of, crop-
and-resize tasks in order to learn representations from unlabelled images, as seen in [31],
[112], [113]. The motivation and details of this masking policy are discussed in Section@
As previously discussed in Chapter|6] the aim of this type of training is to train a network
to detect inconsistency as a proxy for detecting error, in much the same way as SSL tasks
train a model to minimise inconsistency as a proxy for minimising task error. Therefore,
considering consistency with respect to masking is an appropriate choice for this type of

training.

(2) Calculating segmentation consistency

The perturbed images are segmented as py = softmax o f4(x) and p}, = softmax o f4(x"),
shown in Figure [7.2l The frozen segmentation network f, has been trained to maximise
segmentation quality in the source domain, and we are interested in determining when this
network erroneously segments distributionally-shifted images. Depicted as @ in Figure[7.2}
this is estimated by considering both the soft consistency H|[py, p}] € R"*", where H[-, ']
is the cross-entropy function, and the hard consistency M¢ € {0, 1}**%, where for a pixel

location i:

1 if argmax(py,] = argmax[p} ]
MZC — ’ (7.1)

0 otherwise

The consistency mask M¢ is used to calculate the uncertainty threshold ~ in the same

manner as in Section |6.5.1) where the proportion of pixels that are consistent is used as
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an approximation of the proportion of pixels are certain, and therefore are estimated to be

correctly segmented. This uncertainty threshold + is used in the next step.

(3) Estimating uncertainty

In order to train f, to estimate high uncertainty over erroneous regions using the approach
presented in Section [6.5, we allow £, to reduce the soft consistency loss via the binary uncer-
tainty estimate M € {0,1}"*". In this way, if the network estimates that a segmentation
is likely to be inconsistent, then it can express high uncertainty and mask out these pixels.
Shown at @ in Figure[7.2} this binary uncertainty estimate is calculated by thresholding the

model’s uncertainty estimate, which is calculated for a pixel location i as follows:

1 if max o softmax o f4(x)]; >

M'Y

b (7.2)

0 otherwise

Note that M is calculated from a separate segmentation ps = softmax o £4(x), i.e. the
segmentation by f, of the unmasked image x. This is important, as it is described in [31]
that there is a performance gap for neural networks trained on masked images and tested
with unmasked images, which is solved by full fine-tuning on unmasked images. In order
to avoid this performance gap, f, is directly trained to estimate uncertainty on unmasked

images.

(4) Mitigating inconsistency

Finally, the objective L¢ can be calculated as follows (seen at @ in Figure7.2):

Ic— ZfVHW MZ)@ Hpr(Po.i); Pﬁz] 73
- NHW y 17 (7.3)

Similar to Section [6.5, the model can reduce the loss by minimising the inconsistency
between the segmentations py and pf}, or by expressing uncertainty via M.

An additional difference between this objective and that seen in Section|6.5} is the sharp-
ening function p;(-). This is presented in [156] and, for a vector a € R¥, is formulated

1/T
as pr(ag) = # This work uses T" = 0.5, and so p reduces the entropy of soft target
J J
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po;. This is motivated for the same reasons as in Section @ that it further increases the
separation between certain and uncertain pixels, however in the previous chapter, this was
achieved with the asymmetric architecture as opposed to the sharpening function p —as such

this method is simpler.

7.4.2 Avoiding Feature Collapse

A significant challenge in Chapter || was preventing feature collapse from occurring, as de-
tailed in Section|6.5.4} where, despite satisfying the objective, the feature representation was
no longer dependent on the input and contained no semantic information. Feature collapse
is a possible side-effect when maximising a consistency objective across branches, where in
this chapter, these branches are parameterised by f, and f,. A key benefit of the method in
this chapter is that feature collapse cannot occur, because, during uncertainty training, the
parameters of £, are not updated, i.e. £, is frozen.

This is made possible by the practise of initialising the encoders of f, and f, with foun-
dation model parameters. Without this practise, as is true in Chapter |6} the feature represen-
tation would be overly task-specific after the task learning step. The problem this causes is
that, initially, the segmentation consistency would be very low for target domain images as a
result of the initially poor representation of the target domain. This means that, initially, the
objective L® maximises the consistency between very few pixels, and so the representation
of the target domain would not greatly improve. If one of the branches is frozen, then this
remains true, and as a result, the uncertainty estimation quality does not greatly improve
throughout training.

However, in Chapter || this is avoided by updating the parameters of both branches,
and so, while the consistency is initially low, it increases over the course of training and
therefore so does the quality of the representation and of uncertainty estimation. In this
chapter, initialising f, with foundation model parameters circumvents this problem, as even
after fine-tuning, the representation is good enough for the consistency to be high enough

to further improve the representation of f, using the target domain images.
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7.5 Masked Image Modelling for Uncertainty Estimation

As discussed in the previous section, the uncertainty training method presented in this chap-
ter involves perturbing training images via a masking policy. This section will further moti-

vate this decision, and discusses the specifics of the masking policy used.

7.5.1 Background

This thesis, much like the SSL literature, uses both crop-and-resize and masking tasks in
order to perturb the appearance of training images, whilst preserving their semantic content.

‘Masked signal modelling’ — where a portion of an input signal is masked out, and a
model is trained to reconstruct the masked signal — has been a successful approach for
NLP for a number of years, by the name of Masked Language Modeling (MLM). The ap-
plication of this approach to computer vision is more challenging for a number of reasons.
Firstly, language is discrete and semantically dense, and so reconstruction is formulated
as a classification problem, which requires the sophisticated modelling of semantic infor-
mation. In contrast, image reconstruction requires predicting continuous pixel values, for
which high-frequency local information needs to be modelled. Therefore, successful MIM
tasks require a different formulation to MLM tasks, such as seen in iBOT [113], SimMiM [157]
and BEiT [158].

Secondly, CNNs previously dominated computer vision and are not suited to MIM tasks,
as it is not clear how to encode the image masking task. This is in contrast to masking for
transformer architectures, such as ViT [36], where masking tokens and positional encodings
allow for the use of a similar formulation to that seen in MLM.

For the cited works in this section, it is specifically semantic information that is learned
because the masking policy removes information that can only be reconstructed with a
wider semantic understanding of the image, as opposed to low-level high-frequency in-
formation. This can be achieved by (1) randomly sampling a high proportion of patches,
such as in [112], [157], where it is argued that masking tasks for images are easy due to the
redundancy of information, therefore requiring an aggressive masking policy to make the
task sufficiently difficult, or (2) removing a smaller proportion of semantically important

patches, such that the remaining unmasked patches are less informative of the whole, re-
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quiring significant semantic understanding to reconstruct the image, such as in [159]-[161],
which use a range of methods to inform the masking policy. Methods such as [113]], [158]
randomly mask out blocks of multiple patches in a local region, making this masking policy
similar to the latter of the two previous strategies, albeit noisier due to its more random and

un-informed nature.

7.5.2 Motivation

A particular motivation for masking tasks over crop-and-resize tasks, such as in [32], [106],
[162], is that the objective is defined on a patch-wise basis, rather than an image-wise basis.
This means that the network is directly trained to encode patch-wise semantics, as opposed
to image-wise semantics. This is demonstrated in DINOv2 [31], where an iBOT-based ob-
jective is used and is shown to have significantly better fine-tuned semantic segmentation
performance over DINOv1 [162] and OpenCLIP [163], both of which use image-wise ob-
jectives. This suggests that masking could be a better alternative for estimating, and then
learning to detect, segmentation error, instead of adapting crop-and-resize tasks to segmen-
tation as seen in Chapter |6}

An additional benefit of masking tasks is their simplicity. Defining a crop-and-resize
task involves defining the size of the smaller crop relative to the larger crop. If this is made
too small, then there will not be sufficient context to recognise objects or object parts, and
the network is likely to focus on low-level images statistics. If the smaller crop is made too
large, then the task will be made too easy, and the network will not be required to learn
robust semantic features. There is a similar consideration for masking tasks, based on the
scale of masked regions and the proportion of the image that is masked. However, for crop-
and-resize tasks, appearance transforms must also be defined — such as augmenting the hue,
augmenting the saturation, adding random noise — along with hyperparameters associated
with the magnitude of each of these. Therefore, defining a masking task is simpler and

involves considerably fewer hyperparameters.
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7.5.3 Masking Policy

The aim of the masking policy is such that the segmentations produced by f; and f, om
are consistent when the class assignment for that pixel is correct, and they are inconsistent
otherwise. A major difference between the masking task in this method and those found in
literature is that the output space in which comparisons between masked and unmasked are
made is semantic segmentation space, and not an abstract feature space or RGB space.

The masking policy is implemented as m(x) = M © [EJo.1(x), where [E]p.; : RV —
REpexHXW jg the patch embedding of encoder E, M € {0, W is the patch-wise mask, and
© is the element-wise product.

Another difference with commonly presented masking tasks is the nature of the data
used. In contrast to datasets such as ImageNet, for driving datasets such as Cityscapes
there exists a greater range of scale within classes and between classes. For example, a
traffic light in the distance and a traffic light up close occupy a very different number of
pixels. Additionally the classes: building, road, sky take up much more of images than
pedestrian, traffic sign, traffic light, pole.

In masking tasks, it is generally important to mask out semantically consistent regions
of images, e.g. object parts. The significance of the range of scales is therefore that it is
much harder to hand-craft a policy that gets the scale of the masks correct. More concretely,
the challenge is the following: either you (1) mask out large regions, and suffer the case
that entire semantic objects are masked out, with no context information to infer that they
existed, or (2) you mask out small regions, and the masking task is too easy, and the model
can solve the task by local information and interpolation. If the task is too easy or too hard
then this breaks the assumption that consistency approximates accuracy, and prevents the
learning of high-quality uncertainty estimation.

The solution that was found to be the most effective is to mask patches independently,

such that for a patch ¢, the mask is given by:
M; = Bernoulli(pmask) (7.4)

Where pmask = 0.5 worked effectively. The fact that patches are masked independently helps
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to minimise the likelihood that small semantic instances are entirely masked out, while also
providing a suitable level of difficulty.

A number of more complex masking policies were tried in order to try and maximise
the effectiveness of the masking task. These included: (a) masking only the most uncertain
pixels, in order to focus the task on the image regions that were most difficult to segment
(b) learning a masking policy on a pretrained network that maximises the segmentation
inconsistency (c) experiments where the loss was only backpropagated w.r.t. the masked
or unmasked regions. None of these policies were able to improve upon the performance
of the simple mask, and so due to their complexity, they are not proposed as part of the
method. The benefit of a simple method is also that it is unlikely to be biased to the datasets

considered in the experiments in this chapter.

7.6 Experimental Setup

7.6.1 Network Architecture

The segmentation network architecture used in this work is the Mask2Former [148] archi-
tecture. For a description of the details of this architecture, see Figure[7.3| The image size
used during training in this method is (H, W) = (224, 224), and the dimensions of the mask
features are (H,W) = (64, 64).

It is worth noting that the query embeddings act in a very similar manner to prototypes
in prototype segmentation (described in Section|6.2.1), however instead of being calculated
from labelled images, they are initialised and progressively refined by a transformer.

The encoder used with Mask2Former is the DeiT transformer [153], as we want to use

the weights from the training of DINOv1 [162] and DINOv2 [31].

7.6.2 Network Initialisation

The primary foundation model used is the ViT-Small from DINOv2 [31], which is distilled
from a ViT-Giant foundation model. In order to investigate the importance of these weights,
the results are compared to initialising with ViT-Small weights from DINOv1 [162]. The
weights from DINOv1 [162] and DINOv2 [31] represent different levels of generality in fea-
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Figure 7.3: Illustration of the Mask2Former segmentation network, 1 = £(x), used in this
work. The encoder E embeds an image x € R**#*W which is then progressively upsampled
by a decoder Dy, yielding a series of feature maps with the final one being the mask features
z™ € R¥®OHXW - Al but the last of these feature maps are used to condition a transformer
decoder Dy, to transform initial query embeddings z{ € R¥*?% into query embeddings z¢ €
RX*2%_ These final query embeddings are then dot-producted, illustrated as ®, with mask
features z™ € R¥HXW 10 give the logits 1 € R**#*W_ The logits are then finally bilinearly
upsampled to the original image spatial dimensions 1 € RE*#xW.

ture representation, with the former being less general than the latter. This is judged on the
transfer learning performance found in each paper. This difference is a result of DINOv2
used an improved training procedure on a larger, more diverse dataset.

The DINOv1 model is trained on ImageNet-22k without labels, therefore containing ap-
proximately 14 million images, while DINOvV2 is trained on a dataset containing 142 million
images. The dataset for DINOv2 is comprised of a set of image classification datasets (in-
cluding ImageNet-22k), segmentation, depth estimation and image retrieval datasets. Addi-
tionally, images are sampled from a pool of internet-scraped images based on their similarity
with these datasets, thus further increasing the diversity. For example, an additional 57 mil-

lion images are sampled that bear resemblance to the 14 million images in ImageNet-22k.

7.6.3 Data

The evaluation of models for this method is similar to that of the previous chapter. We use
labelled training images to define the source domain, and then unlabelled training images
and labelled images from target domains. In this work, Cityscapes is the source domain,
and the following target domains are used: SAX London, SAX New Forest, SAX Scotland,
BDD (described in Chapter 4).

We also make the point to test a model trained with unlabelled data from a given target

domain on each of the other labelled test datasets. This allows us to examine how uncer-
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tainty training in one domain generalises to other target domains. We also again test on
WildDash [134], which is a domain that contains no unlabelled training images, and is itself
very diverse.

We also perform testing on the validation set in Cityscapes in order to compare how
uncertainty estimation performance in the source domain compares to that of the target

domains.

7.6.4 Baselines

In order to evaluate the performance of the method proposed in this chapter, we consider a
number of baselines. Unlike the baselines in Chapter|6} each of the baselines in this method
are either initialised with DINOv1 or DINOv2 weights, as will be described in their model
name. This makes for fair comparison to our proposed method, and provides an interesting
contrast with the previous chapter’s baseline, as it tells us the effect of general representa-
tions on a range of different methods. As before, we consider both epistemic uncertainty
estimation techniques and OoD detection-based representation methods.

For the former, we train both MCD networks and sets of ensembles. It is again worth
noting that these methods are computationally heavy compared with methods such as ours
and representation-based methods.

As for the representation-based methods, we consider methods that are trained in a su-
pervised manner on the source dataset, and then define a specific inference procedure in
order to estimate uncertainty. The inference procedures considered are (1) calculating the
max softmax score, named as MaxS—-xxx, and (2) and calculating Mahalanobis distance be-
tween an extracted target pixel feature and the mean class-wise source domain features,
names as GMM-xxx. These representation baselines allow us to examine how the proposed
uncertainty training provides an improved representation than either full supervised fine-
tuning of encoder and decoder, or leveraging the general encoder with supervised trained

decoder.
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7.7 Experiments and Results

This section firstly describes the experiments performed in this chapter. Subsequently, the
quantitative results are discussed and shown in Table[7.2} Table[7.1]and Figure [7.4] Addi-

tional qualitative results can be found in Figure[7.5,

Data: We train models with different unlabelled target datasets, and evaluate which datasets
worked best for learning uncertainty estimation for each test domain. The dataset used can
be found in the model name, e.g. xxx-LDN-xxx is trained with unlabelled SAX London

images.

Initialisation: The models trained are either initialised with DINOv1 or DINOv2 weights
for the encoder. This allows us to investigate how impactful a more general representation
is to uncertainty estimation performance. This information can be seen in the model names:

xxx-xxx-d2 uses DINOv2 weights and xxx-xxx-d1 uses DINOv].

Input Augmentation: The method in this chapter uses a masking task instead of a crop-
and-resize task to calculate segmentation consistency, therefore we investigate the benefits
of each. The models trained with a masking task are named Mask-xxx-xxx, while the

models trained with crop-and-resize are named CsR-xxx-xxx.

Freezing fo: We investigate the effect of not freezing f,, as this a key difference between
this method and that in Chapter [fl The equivalent branch to £, in the method in Chap-
ter |6| was not frozen, but updated along with the branch equivalent to £, as discussed in

Section If £4 is frozen, this can been seen in the method name as xxx—f;.

Freezing E: As described in the framework in Section|7.3} in order to maximise the segmen-
tation quality on the source domain, the encoder E is fine-tuned. This reduces the amount
of task-agnostic information in the encoder’s representation, and therefore we hypothesized
in Section [7.2] that this would reduce the quality of uncertainty estimation. We investigate
this by performing experiments where the encoder is frozen during training on the source

domain. Results for this are found in the method names as xxx-E".
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Figure 7.4: In these plots, we measure misclassification detection performance using F 5
scores plotted against the proportion of pixels that are certain and accurate p(a, c). The base-
lines are trained only with labelled Cityscapes data, while our proposed model, Mask-d2,
leverages unlabelled images from the domain in which testing is occurring. All models are
able to perform uncertainty estimation similarly well for Cityscapes, however when tested
on the distributionally shifted target domains, Mask~-d2’s performance exceeds that of the
baselines. The gap in MaxF ;5 score between Mask-d2 and MaxS-d2, MaxS—-d2-E* is de-
scriptive of the benefit of our proposed uncertainty training.

7.7.1 Different Target Domains

Firstly, it can be seen in Figure [7.4]that the proposed Mask—-d2 models outperform the base-
lines in terms of MaxF.,. In Table we can see that the model with highest MaxF.,
score on each test dataset is the Mask—-d2 model that is trained with unlabelled images from
same domain as the test dataset. This is also very nearly true for the AUPR metric, shown
in Table The differences between the Mask-d2 models trained on different unlabelled
domains, however, are not that large, and it is common for a different Mask-d2 model to
outperform each of the baselines, showing that the proposed models generalise well to per-
forming uncertainty estimation in different domains.

This is shown particularly well by looking at the performance of the Mask-d2 models
on the WildDash dataset for which no unlabelled images are available. The best performing
model was Mask-d2-BDD, but each of the other models also performed well compared
with the baselines. The reason for the BDD dataset outperforming the rest is perhaps due
to its greater diversity, due to its collection in a wider range of conditions and wider range
of locations. It is nonetheless true, that for each domain, using domain-specific training
unlabelled images is the best performing strategy, rather than opting for a more general

dataset such as BDD.
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MaxF., @p(a,c)
Method CS LDN NF SCOT BDD WD

Ensemble-5-d2 0944 @0.721 0939 @0.699 094 @0.697 0.894@0.552 0.932@0.695 0.912 @ 0.624
Ensemble-10-d2 0945@0.727 0.94@0.689 0942@0.701 0.891@0.537 0.933@0.7 0.913@0.626
MCD-5-d2 0935@0.726 0919@0.656 0912@0.64 0.803@0.416 0.926 @ 0.679 0.903 @ 0.599
MCD-10-d2 0.935@0.726 0.92@0.656 0912@0.639 0.805@0.415 0.926 @0.679 0.903 @ 0.599
MaxS-d2-E* 0933 @0.714 0.899 @ 0.658 0916 @0.641 0.857 @ 0.507 0.925 @ 0.678 0.908 @ 0.609

9 MaxS—-d2 0944 @0.739 0.881 @0.674 0.883 @ 0.659 0.805@ 0.458 0.894@0.674 0.87 @ 0.603
g GMM-d2 0904 @0.757 0.878@0.692 0.881@0.683 0.778 @0.415 0.864 @0.674 0.805 @ 0.567
% MaxS-dl1-E* 0912@0.67 0859 @0.579 0899 @0.612 0.82@0.359 0.886@0.586 0.86 @ 0.483
2a) MaxS-d1 0936 @0.716 0.858@0.61 0.887@0.628 0.79@0.343 0.896 @0.622 0.853 @ 0.497
GMM-d1 0.894 @ 0.751 0.789 @0.639 0.823@0.61 0.687 @0.281 0.827 @ 0.656 0.743 @ 0.572
C&R-NF-d2 0928 @0.703 0911 @0.641 0.925@0.662 0.869 @ 0.518 0.912@0.669 0.891 @ 0.61
C&R-NF-d2-f} 0931 @0.69 0894@0.658 0902@0.66 0.863@0.524 0.923 @ 0.676 0.908 @ 0.618
C&R-NF-d1 0917 @ 0.666 0.867 @0.567 0.901 @0.607 0.825@0.364 0.898 @ 0.618 0.874 @ 0.522

C&R-NF-d1-f} 0919@0.67 0.894@0.599 0907 @0.612 0.752@0.338 0.891 @0.622 0.852@0.5
Mask-LDN-d2 0945 @0.735 0.948 @ 0.693 0.948 @ 0.697 0.889 @ 0.481 0.934 @ 0.694 0.913 @ 0.605
Mask-NF-d2 0947 @0.724 0.941 @0.679 0.948 @ 0.696 0.903 @ 0.517 0.927 @ 0.677 0.902 @ 0.582
g Mask-SCOT-d2 0934 @0.706 0924 @0.645 0939 @0.693 0.905@ 0.568 092 @ 0.662 0.899 @ 0.579
®  Mask-BDD-d2 0.938@0.725 0.931@0.675 0.942@0.698 0.891 @0.501 0.936 @ 0.696 0.918 @ 0.631
Mask-LDN-d1 0931 @0.693 09@0.623 0919@0.641 0848 @0.361 091@0.63 0.879 @ 0.508
Mask-SCOT-d1 0.926 @ 0.679 0.881 @0.599 0919 @ 0.636 0.851 @0.397 0.907 @0.624 0.87 @ 0.502

Table 7.1: Misclassification Detection performance described by MaxF.,, @ p(a,c) forarange

of test domains.

AUPR

Method CS LDN NF SCOT BDD WD
Ensemble-5-d2 098 0976 0979 0933 0.967 0.948
Ensemble-10-d2 0.981 0976 0978 0932 0967 0.946
MCD-5-d2 0977 0971 0963 0.778 0.971 0.959
MCD-10-d2 0977 0971 0963 0.786 0.971 0.959
MaxS-d2-E* 0975 0958 0968 0931 097 0.961
4 MaxS-d2 0982 0933 0942 0861 094 0919
g GMM-d2 0936 0.894 0914 0.838 0.896 0.845
% MaxS-dl-E* 0966 092 0953 0.889 0.942 0.925
M MaxS-dl 098 0913 0942 0.859 0949 0918
GMM-d1 0921 0.781 0.866 0.741 0.835 0.739
C&R-NF-d2 0972 0967 0975 0936 0.954 0.937

C&R-NF-d2-f; 0978 0927 0932 092 0965 0.96
C&R-NF-dl 0972 0929 0954 0.883 0.951 0.935
C&R-NF-d1-f; 0972 0949 0957 0.794 0941 0915
Mask-LDN-d2 0985 0.987 0.985 0947 0.973 0.966
Mask-NF-d2 0.988 0984 0.985 0.958 0.964 0.958
g Mask-SCOT-d2 0977 0975 098 0.96 0.965 0.957
@) Mask-BDD-d2 098 0.977 0981 0952 0972 0.967
Mask-LDN-d1l 0979 0956 0969 091 0.957 0.937
Mask-SCOT-dl 0977 0936 0966 092 0959 0.933

Table 7.2: Misclassification Detection performance summarised over all possible thresholds
described by AUPR for a range of test domains.

7.7.2 FreezingE

Table7.1|and Table|7.2] show that by fine-tuning the encoder, the uncertainty quality is im-
proved for the distributionally shifted test domains. Both the MaxF'./, and AUPR metrics in
these tables are higher for MaxS-d2-E" than for MaxS—-d2. This confirms our hypothesis,

and is explained by the fact that the fine-tuning removes task-agnostic information from the
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representation.

When considering the less general representation of DINOv1, this effect is similar, but
much less pronounced, i.e. there is only a very small benefit to uncertainty estimation in not
tine-tuning the DINOV1 representation. In fact, the fully fine-tuned model performs slightly
better for the BDD test dataset. This observation can be seen by comparing MaxS-d1-E*
and MaxS-d1 in Table[7.1] and Table [7.2] and can be explained by the fact that there was
significantly less task-agnostic information in the DINOv1 representation to begin with. This
means that there is less of this information to remove by fine-tuning, and therefore less of a
drop in quality of uncertainty estimation.

Comparing Mask-d2 to MaxS-d2-E" in Table[7.1|and Table [7.2] shows us that the rep-
resentation learned with our uncertainty training has improved upon the general pretrain-
ing by learning task-specific attributes with are important to uncertainty estimation, while
also not over-fitting to the training data. This is equally true when comparing Mask-d1 to

MaxS-d1-E*.

7.7.3 Comparing perturbation methods

It is of interest to us to consider how the performance of the C&R approaches compare to
that of the Mask approaches. We show in Table [7.1] and Table [7.2} the performance of the
Mask approaches are generally better than that of C&R approaches, but there is an additional
benefit which is important to highlight, relating to the discussion in Section|7.5.2|

Using C&R clearly requires designing both a cropping and colour-space augmentation
scheme, and it is important that, particularly the latter, is tuned in order to be optimal for
the data used. We show that this is however less true for our masking task, which only has
one hyperparameter, which it is quite robust to.

We trained two models for each of Mask and C&R each with different hyperparameters
on the SAX New Forest domain. For the former, we use masking policies with pmasc = 0.25
and pmask = 0.75. For the latter, we train one model where less colour-space augmentation,
and one with a cropping policy with different hyperparameters.

For the masking task with pmasc = 0.25 and pmask = 0.75, the MaxF1/, @ p(a, c) scores were
0.945 @ 0.705 and 0.951 @ 0.713 respectively. For the C&R task, the MaxF., @ p(a, c) scores
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were 0.926 @ 0.655 and 0.891 @ 0.648 respectively.
We can see that the scores for the C&R task varies considerably more than that of the
masking task. For this reason, it is much simpler and easier to use a masking task to obtain

high-quality uncertainty estimates.

7.7.4 Freezing fy

We would like to determine the effects of freezing f, as it prevents a significant training
failure mode (as discussed in Section [7.4.2), but it is possible that it could impact quality of
learned uncertainty estimation. As per our previous chapter, we test this on the C&R task,
and do so in the SAX New Forest domain. These models can be found in Table [Z.1] and
Table[7.2]as C&aR-NF-d1-£; and C&R-NF-d2-fj.

When training with DINOv1 weights, we see that there is a improvement in uncertainty
estimation quality when the £y is not frozen. This benefit is however not seen when using
DINOV2. This means that when the initialisation is sufficiently general, we can simplify the

training procedure greatly by freezing f, with no cost in performance.

7.8 Conclusion

This final method has used a combination of large-scale training and driving-domain-specific
uncertainty training to learn distribution uncertainty estimation. It is therefore a combina-
tion of the ideas presented in Chapter [5|and Chapter |6l Instead of learning a large-scale
OoD detection problem like in Chapter|5} this work used a model that is distilled from a net-
work trained with more typical large-scale self-supervised learning. This chapter has shown
that these approaches are complementary and lead to very high quality distributional un-
certainty estimation.

In addition to the changes in architecture and network initialisation, this chapter also
advocates for the use of masking instead of crop-and-resize data augmentation. It suggests
that when using an encoder with a transformer architecture, masking may well be a more

convenient choice due to decreased reliance on tuned hyperparameters.
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(c) SAX New Forest

Figure 7.5: Qualitative results for the proposed Mask-d2 model, presenting (left) an RGB
image, (middle) the semantic segmentation and (right) the estimated uncertainty in the jet
colour map, where red is uncertain and blue is certain. For each distributionally shifted
image, the incorrect segmentations are effectively detected by the model’s estimated uncer-
tainty. The variant of Mask-d2 model used is that which was trained on the same domains
as the test image shown (test domain described in sub-caption).
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Chapter 8

Conclusion

Contents
[B1 Summary|l. . . .. ... e e 171
82 ClosingRemarks| . . . .. ......... ... . . i, 174
8.1 Summary

It is vitally important that safety and trust are considered in the deployment of robotic sys-
tems, and thus should be a key motivator for their system design. As such, the objective of
this thesis has been to tackle the problem of distributional shift, where data unlike that seen
in model training causes an increase in error rate and potentially dangerous deployment
scenarios.

With a specific focus on the task of semantic segmentation, this thesis has investigated
solutions to the problem of distributional shift that involve the detection of test error, i.e.
uncertainty estimation. This is an orthogonal avenue of mitigating test error to that of re-
ducing it, and this thesis argues that both are important steps in the effort to ensure safety
and trust when using deep learning systems for safety-critical applications.

For mobile robotics applications, this thesis has concluded that, in order to reduce the
computational cost at inference time, uncertainty estimates should ideally be output by a
segmentation network alongside its estimated semantic segmentations. In light of the dis-

cussion of model miscalibration in Chapter 2} the literature regarding uncertainty estimation
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and OoD detection was investigated and discussed in Chapter [3| with the aim to identify
methods that provide insight for the training of a segmentation network to output high-
quality uncertainty estimates in a single forward pass.

A conclusion from Chapter 3| was that this thesis should focus on methods that learn
uncertainty estimation from training data that is distributionally-shifted from the labelled
segmentation training dataset. This is key, because the representation learned from super-
vised semantic segmentation training is specific to the task and the domain defined by the
labelled dataset used, which makes uncertainty estimation challenging on a shifted domain.
For this reason, distributional uncertainty estimation can be improved by using additional
training data to learn a representation that can better detect the relevant semantic differences
between the labelled segmentation dataset and a given test image.

Following Chapter[3|is a search for the answers to the following questions: (a) What data
should be used to tailor a segmentation network to perform high-quality pixel-wise uncer-
tainty estimation on distributionally-shifted test data? (b) What does a training procedure
look like that allows us to train on this data for this purpose? In answering these questions,
this thesis has presented three methods that learn distributional uncertainty estimation from
a distributionally-shifted training dataset.

The first method, presented in Chapter [5] trains a segmentation network to perform
large-scale OoD detection by training on a large-scale image recognition dataset, in addi-
tion to semantic segmentation. Given the availability of very large and diverse datasets
such as ImageNet [97] or LAION-5B [135] which are comprised almost entirely of natural
images from outside of the domain of the labelled segmentation training dataset, it is possi-
ble to expose a segmentation network to a diverse set of OoD images. This method defines
an OoD detection task based on this to train a network to learn a separable representation of
the two types of training data: in-distribution labelled driving images from a given domain,
and unlabelled images from a diverse natural image dataset. The key contributions of this

method are as follows:

¢ A data augmentation procedure that combines in-distribution and OoD images on a
pixel-wise basis and effectively reduces the appearance difference between them. This

results in an pixel-wise OoD detection task that is sufficiently challenging to train a
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segmentation network to robustly perform distributional uncertainty estimation.

* A contrastive loss function that trains a segmentation network to learn a representation
in which in-distribution and OoD instances are separable, whilst accounting for the

label noise induced by using large-scale unlabelled image datasets.

Our primary insight from this chapter was as follows: the smaller the difference between
distributionally-shifted training images and in-distribution training images, the higher the
quality of the learned uncertainty estimation.

The second method, presented in Chapter|6| draws on this insight and uses distributionally-
shifted driving domain images during training. This is because these images are inherently
more similar to the in-distribution labelled driving images than images from a large-scale
dataset, and can therefore lead to more robust learned distributional uncertainty estimation.

The contributions of this method are as follows:

* A training task based on crop-and-resize data augmentation to detect regions of likely

segmentation error.

* Aninference procedure to output uncertainty as a feature space distance, coupled with
a loss function which improves the segmentation network’s representation for distri-

butional uncertainty estimation.

This method is evaluated with an extensive set of experiments to measure the quality of
the proposed model’s uncertainty estimates, and to ablate the method to investigate how its
components affect the empirical performance.

The final method, presented in Chapter 7, makes use of both the distributionally-shifted
driving domain images from the previous chapter and diverse natural images from a unla-
belled large-scale dataset. In doing so, it combines the benefits of the previous two methods.

This method’s contributions are as follows:

* A proposed framework for training a segmentation network, involving three steps.
The first step trains an encoder using a large diverse image dataset in a self-supervised
manner, yielding a foundation model. Secondly, this encoder is used to initialise the

segmentation network, which is fine-tuned to perform semantic segmentation on a
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given domain. Finally, a new segmentation network, also initialised with the encoder
from the first step, is trained to detect when error occurs on unlabelled distributionally-
shifted driving images. This final step fine-tunes the model for both distributional un-
certainty estimation and semantic segmentation, and therefore maintains more of the
task-agnostic information in the encoder’s representation than is the case for standard

tine-tuning.

* A method for the final step that involves a masking task, which is simpler and more

effective than using crop-and-resize data augmentation.

8.2 Closing Remarks

In the broadest terms, this thesis seeks to design deep learning systems for which safety and
trust are of paramount importance. This is a significant challenge, and one which ought
to be central to the field of robotics in the current era. It is also a challenge that can bene-
tit greatly from the increasing efforts into training and open-sourcing large-scale computer
vision models, as discussed in Chapter |Zl At the nexus of foundation models, model distil-
lation and uncertainty training, we believe there is great promise for the further reduction

in error rate for robotic perception systems.
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